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While efforts to document endangered languages have steadily increased, the phonetic analysis of

endangered language data remains a challenge. The transcription of large documentation corpora

is, by itself, a tremendous feat. Yet, the process of segmentation remains a bottleneck for research

with data of this kind. This paper examines whether a speech processing tool, forced alignment, can

facilitate the segmentation task for small data sets, even when the target language differs from the

training language. The authors also examined whether a phone set with contextualization outper-

forms a more general one. The accuracy of two forced aligners trained on English (HMALIGN and

P2FA) was assessed using corpus data from Yolox�ochitl Mixtec. Overall, agreement performance

was relatively good, with accuracy at 70.9% within 30ms for HMALIGN and 65.7% within 30ms for

P2FA. Segmental and tonal categories influenced accuracy as well. For instance, additional stop allo-

phones in HMALIGN’s phone set aided alignment accuracy. Agreement differences between aligners

also corresponded closely with the types of data on which the aligners were trained. Overall, using

existing alignment systems was found to have potential for making phonetic analysis of small cor-

pora more efficient, with more allophonic phone sets providing better agreement than general ones.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4816491]
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I. INTRODUCTION

Over the past thirty years, the documentation of endan-

gered languages has become an urgent task for linguistic

research. Part of what motivates this interest is the need to

provide a more complete record of linguistic and cultural

knowledge. Of the approximately 6900 languages now spo-

ken, many are endangered (Krauss, 1992) and of these only

a relatively small proportion are adequately documented.

Indeed, it has been estimated that between 27 and 89% of all

language families are threatened with complete disappear-

ance (Whalen and Simons, 2012). Another motivating factor

in language documentation is typological. Linguists still

know relatively little about the diversity of language struc-

tures and patterns that exist. The development of any viable

language typology or cross-linguistic theory of language pro-

duction or perception must be able to account for the diver-

sity of patterns that occur throughout the world, many of

which are still undocumented.

Efforts at language documentation have been increased

significantly in recent years due to the efforts of several

funding agencies: the National Science Foundation

Documenting Endangered Languages Program, the

Endangered Language Fund, the Hans Rausing Endangered

Language Program, Dokumentation Bedrohter Sprachen,

and the Foundation for Endangered Languages. Hundreds of

projects throughout the world collect language materials in

endangered or minority languages and describe the gram-

matical structures of these languages. The collection of

speech corpora for these languages comprises most of the

available data for descriptive and exploratory linguistic anal-

yses. While some of these data have contributed significantly

to corpus-based grammatical research (see Bickel et al.,
2007 and Du Bois, 1987 for examples), their utility has been

less evident with respect to phonological and phonetic

description. Many documentation projects provide language

materials in the form of corpora, lexicons, and grammar,

with relatively little archived material specifically addressing

phonetic or phonological questions. Given the nature of the

data set for these endangered languages, can the material be

made accessible to phonetic/phonological research?

One of the reasons for the absence of phonetic descrip-

tions from corpora is the substantial time required for man-

ual speech segmentation and annotation. Once proper

transcription of speech corpora is completed by linguists and
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speakers familiar with the language’s structure, these tran-

scriptions must be acoustically aligned with the recording

itself. This segmentation process is even more time-

consuming than transcription and it may also be prone to

human errors (Jarifi et al., 2008). Yet segmentation is a pre-

requisite for phonetic and phonological research on the doc-

umentation corpora.

Automatic methods of text-speech alignment (forced
alignment) have been successful in the extraction of natural

speech data for a variety of languages: well-studied lan-

guages such as English (Yuan and Liberman 2008, 2009),

French (Adda-Decker and Snoeren, 2011), and Mandarin

Chinese (Lin et al., 2005) as well as less well-studied lan-

guages like Gaelic (N�ı Chasaide et al., 2006) and Xhosa

(Roux and Visagie, 2007). Forced alignment, however, has

not yet been applied to endangered language material pro-

duced by documentation projects. There are two main rea-

sons for this. First, most of the research to develop forced

alignment programs for a particular language is driven by

commercial, not research interests. Corporations seek to

build automatic systems that serve large languages with a

large number of speakers. There is little commercial interest

in devoting time to endangered languages, which by defini-

tion often have relatively few speakers. Second, forced

alignment systems are often trained on large corpora (often

between ten and hundreds of hours of speech) from a large

number of speakers, e.g., between 40 (Malfrère et al., 2003)
and 630 speakers (Garofolo et al., 1993). Even an automatic

speech recognition system (ASR) built for under-resourced

languages typically involves recordings from hundreds of

speakers (Badenhorst et al., 2011). Transcribed corpora from

endangered language documentation projects typically come

from a handful of speakers and typically consist of between

5–60 h of recordings. These data sets are limited in compari-

son with those that have been used for building forced align-

ment systems, so it is not clear that it would be feasible to

build systems with current levels of data from most endan-

gered language projects.

One way to take advantage of forced alignment for

endangered language research would be to apply existing

aligners trained on mainstream languages to the smaller cor-

pora from different languages of interest. The viability of

this approach has been tested for major languages, such as

Hungarian, Russian, Czech, Malay, and English (Sim and Li

2008a, 2008b; Hai Do et al. 2012), but not for endangered
language data from a documentation project. Another way to

bring forced alignment to such languages is with multilin-

gual speech recognition systems. Yet, while multilingual

speech recognition has improved over the years, word error

rates and misalignments still remain at very high levels

(20–60%) (Boula de Mare€uil et al., 1999; Burget et al., 2010;
Dalsgaard et al., 1991; Imseng et al., 2012; Karafi�at et al.,
2012). Better alignment has been found with language-

dependent systems than with multilingual systems.

The current study examines how well two existing

forced aligners work in the segmentation of endangered lan-

guage data and specifically tests two hypotheses. The first is

that forced alignment, even using a system trained on an

unrelated language, can speed phonetic processing if the

segment set is fairly similar between the target and training

languages. The second is that a context-sensitive phone set

will provide better phone mappings for under-resourced lan-

guages due to the greater likelihood that the broader set will

allow for matches on finer acoustic detail than a narrower

set. The data for the present test consist of an isolated word

corpus from Yolox�ochitl Mixtec (YM, henceforth; ISO 639

code xty), an Oto-Manguean language spoken in a commu-

nity in Guerrero, Mexico, about four hours southeast of

Acapulco in the municipality of San Luis Acatl�an. This lan-
guage is practical for an English-based alignment system as

the language’s phoneme inventory is relatively simple and

largely overlapping with that of English. The corpus consists

of six repetitions of 261 YM words spoken by ten native

speakers (15 660 tokens), totaling approximately 7 h of

speech. The results of two different forced aligners were

compared with hand-labeling. The first was P2FA, developed

at the University of Pennsylvania Phonetics Laboratory

(Yuan and Liberman, 2008). The second was the Nemours

SRL aligner (henceforth, HMALIGN), developed in the Speech

Research Laboratory at the Nemours Alfred I. duPont

Hospital for Children by Timothy Bunnell and colleagues.

HMALIGN is a stand-alone version of the aligner developed for

the ModelTalker TTS system voice recording program

(Yarrington et al., 2008). The viability of forced alignment

for this type of corpus and the relative accuracy of the two

phone sets were evaluated by comparing the agreement of

boundary locations between forced alignment and hand-

labeling. Agreement was compared both generally and for

different phonological classes. Statistical analyses were per-

formed to test how well each aligner did for each phonologi-

cal class. The results here are novel in both their application

to endangered language data and in their relevance to speech

technology. To date, we know of no such study that exam-

ines the temporal aspects of alignment using an aligner

trained on a different source language from that which is

tested. The current study seeks to fill this gap.

A. Forced alignment

Progress in speech processing has made it possible to

automatically segment transcribed speech. Constructing

speech processing systems for a language usually implies

developing an ASR. This requires a significant amount of

time-coded and transcribed speech data along with the corre-

sponding text and pronunciation dictionary (Livescu et al.,
2012; Rabiner et al., 1993). Unless the training corpus is

read speech based on a script, researchers have usually had

to provide transcriptions by hand. Though, recent advances

in deep neural networks have shown automatically generated

transcripts to be very useful in training speech systems

(Hinton et al., 2012). Once there is enough annotated data to

build a successful ASR system, that system can be used to

automatically mark phonetic segments in a corpus of tran-

scribed utterances. The development of speech corpora has,

in fact, relied on forced alignment to provide a first pass seg-

mentation which is subsequently corrected by hand (Zue and

Seneff, 1990; Zue et al., 1996). The system does this by

deriving word- and phone-level labeling from a word-level
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transcription and a “dictionary” (a lexical list from the cor-

pus). For example, if a forced aligner is provided with the

sound file and transcription of “bad,” it will look up the

phones for the word and generate the temporal boundaries

for the word and the phones (/b/, /æ/, /d/). Misaligned boun-

daries are then repaired and used to refit the forced align-

ment model parameters.

When developing a speech recognizer for a new lan-

guage, it is also possible to use a forced alignment built for a

different language with a well-trained recognizer to provide

phone segmentation. This is especially useful for under-

resourced languages lacking a substantial set of training data

for a complete ASR system (Badenhorst et al., 2011;

Livescu et al., 2012; Sim and Li, 2008a, 2008b). The accu-

racy of this strategy depends closely on the fit between the

phone set used to build the aligner and the phone set of the

target language. In a series of studies Sim and Li (2008a,

2008b) found that a Hungarian phone recognizer performed

better than a Russian one in recognizing Czech phones. This

finding is somewhat surprising considering that Russian and

Czech are Slavic languages (Indo-European), while

Hungarian is Ugric (Uralic), belonging to a completely sepa-

rate language stock. Typically, aligner performance improves

by including training data from genetically similar languages,

such as Dutch, English, and German training data for

Afrikaans (Imseng et al., 2012). However, the consonant sys-
tems of Czech and Hungarian are quite similar (especially

among obstruents), while Russian has a distinct set of palatal-

ized consonants which are missing in Czech (Dankovičov�a,
1997; Jones and Ward, 1969). Thus, a closer correspondence

between the phone inventory of the training and target lan-

guages is a more accurate predictor of the accuracy of forced

alignment than the genetic similarity of the languages.

Another way of achieving a closer correspondence

between phone inventories is by including context-sensitive

phones. Sim and Li (2008a, 2008b) found that including con-

textual information in phone mapping resulted in a relative

improvement of 5 to 7%. By their nature, certain monophone

sets contain more contextual information than others. In this

study, we compare the accuracy of two English-trained

forced aligners (P2FA and HMALIGN) on a elicited corpus of

YM speech. P2FA’s acoustic models are GMM-based mono-

phone-HMMs trained using the SCOTUS corpus (Garofolo

et al., 1993), which contains oral arguments made before the

Supreme Court of the United States. Each HMM state con-

sists of 32 Gaussian mixture components on 39 perceptual

linear predictive coefficients (12 cepstral plus energy, delta,

and acceleration). P2FA employs CMU phones, which do not

show allophonic variants in English. These phones are

context-independent. On the other hand, HMALIGN uses a set

of discrete monophone HMMs trained on data from the

TIMIT corpus (Garofolo et al., 1993). For HMALIGN, separate

375-word codebooks were trained on vectors of eight mel

frequency cepstral coefficients, plus their delta and accelera-

tion coefficients. It employs the larger Applied Science and

Engineering Laboratories (ASEL) extended English phone

set, which includes some allophones, such as aspirated and

unaspirated stop variants. While these aligners differ from

each other in a number of ways, the inclusion of some

allophones in HMALIGN allows us to examine their role in

aligner agreement for endangered language data. The phone-

phoneme mappings are shown in Table IV and described in

Sec. II B.

B. Language background

Yolox�ochitl Mixtec is an Oto-Manguean language spo-

ken in the state of Guerrero, Mexico. The segmental inven-

tory is rather simple, but the lexical tone inventory is quite

complex. The consonant and vowel inventories are given in

Tables I and II, respectively.

The syllable structure in YM is simple, consisting only

of CV syllables. While the glottal stop appears in the inven-

tory above, it is best considered a prosodic characteristic of

words which occurs in foot-medially. Like many Mixtec lan-

guages, all content words are minimally bimoraic (Macken

and Salmons, 1997), consisting either of a consonant fol-

lowed by a long vowel (CVV) or two syllables with a short

vowel (CVCV), and maximally trimoraic, e.g., CVCVV or

CVCVCV. While the tonal morphophonology is quite com-

plex, words are morphologically simple. Verbs may be pre-

ceded by a single prefix morpheme (usually marking aspect).

All words may be followed by one of several personal pro-

nominal enclitics, most of the shape /CV/.

The tonal patterns in YM, occurring as they do primarily

on the vocalic segments, do not need a separate alignment.

Although they are not directly represented, however, the

tones may influence the alignment because they impose un-

English-like patterns on F0 and amplitude. Thus, a brief in-

ventory is provided here. Lexically, there are four level tones

and five contour tones consisting of two levels. Up to five

different tones may occur on the initial mora of a root and up

to eight may occur on the second mora. The distribution of

tone varies in relation to both word size and glottalization

(for example, rising or falling tones almost never occur in

the second mora of a word with a glottalized vowel in the

TABLE I. Consonant inventory in Yolox�ochitl Mixtec.

Bilabial Dental

Alveo-

palatal Palatal Velar

Labialized

velar Glottal

Stop pa t k kw ?
Pre-nasalized stop mb nd ˛g

Fricative s S
Affricate tS
Nasal m n

Approximant j w

Lateral

approximant

l

Tap Q

a/p/ is quite rare in native vocabulary.

TABLE II. Vowel inventory in Yolox�ochitl Mixtec.

Front Central Back

Close i,~ı u, ~u

Close-mid e, ~e o, ~o

Open a, ~a
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first mora). These aspects of the tonal distribution are not

discussed here. Table III shows the YM tonal inventory with

representative bimoraic monomorphemic words. Up to 20

tonal combinations have been documented. In morphologi-

cally complex words, more combinations are possible as cer-

tain morphemes may be marked with tone.

Two additional phonological patterns in YM are rele-

vant to the current study. First, there is a robust process of

progressive vowel nasalization. The vowels which follows

the nasal consonant in the same syllable is phonetically

nasalized, e.g., /na3a4/ “night” is phonetically [n~a3~a4]. This
process does not affect vowels following prenasalized stops

(e.g., [nd]). As a result of this process, there is no contrast in

vowel nasalization after nasal consonants, i.e., all vowels

following a nasal consonant are nasalized. English vowels

can be allophonically nasalized, but nasalization occurs on

the vowel preceding a nasal consonant (Beddor and Krakow,

1999). Thus both the phonemic nasalization and the direction

of allophonic nasalization in YM differ from that in

English. Second, the glottal stop occurs only word-medially,

either intervocalically, e.g., /ja?4a1/ “gray,” or preceding a

sonorant consonant, e.g., /sa?3ma4/ “cloth to wrap tortillas.”

It is a feature of the phonological foot in YM and it fre-

quently surfaces as creaky phonation in both contexts where

it occurs. This pattern does not have a direct analog in

English.

II. METHODS

A. Data collection and hand-labeling

The data set for the current study comes from a corpus

of isolated YM words collected in 2010 by J. Amith, C.

DiCanio, and R. Castillo Garc�ıa. It comprises 261 words,

repeated six times, produced by each of ten native speakers

of YM. A total of 15 660 words were recorded. The primary

purpose of this elicitation was to explore differences in the

production of tone in words of different sizes. Of the 261

words, 169 were disyllabic, 89 were monosyllabic, and three

were trisyllabic. Including morphologically derived words, a

total of 30 different tonal melodies occurred on these words.

For most of these, the onset consonants were balanced for

voicing. Five of the 30 tonal melodies were quite rare and

only a single word was recorded for each of these. The entire

corpus was hand-labeled by L. DiDomenico, a linguistics

graduate student at Universit�e Lyon 2 and manually checked

by the first author.

B. Data coding and forced alignment

The YM data is phonologically different from that of

English, the language on which each of the forced aligners is

trained. Despite such differences, care was taken to select the

closest possible phone correspondence in the forced align-

ment. The phone correspondences are shown in Table IV. For

both P2FA and HMALIGN, certain phonological categories were

neutralized during alignment. In particular, nasal and oral

vowels were treated as oral phones, as the aligners were

TABLE III. Tones in Yolox�ochitl Mixtec (1 is low, 4 is high).

Tone—Initial mora

Tone—Final mora /1/ /3/ /4/ /13/ /14/

/1/ ja1a1 “slow” ja?4a1 “grey” na?14a1 “demonic”

/2/ j~u3~u2 “town”
Ð
a?4a2 “cooked maize” t~ı13?~ı2 “yielded”

Ð
~a?14~a2 “greasy”

/3/ ta1a3 “man” nde3e3 “face down” i4ka3 “rich” nu14u3 “face”

/4/
Ð
i1i4 “grandfather” na3a4 “night” ja4a4 “cold (personality)” je?14e4 “door”

/13/ t
Ð
e4e13 “large”

/24/ ja4a24 “tongue”

/32/
Ð
a1ko32 “opossum”

/42/ ta1kwi42 “water” j~u3~u42 “dark”

TABLE IV. Phone correspondences with YM phonemes.
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trained on English data; the substantial coarticulatory vowel

nasalization (Beddor and Krakow, 1999) was ignored by the

systems. Moreover, two pairs of phonemes were neutralized

in alignment. Both /k/ and /kw/ were treated as the same

phone, /k/, and both /n/ and /nd/ were treated as the same

phone, /n/. Note that collapsing these categories does not

entail the loss of detail in the transcription itself. Those cate-

gories were simply aligned with a phonetic segment that the

English-based systems have as a phone. The duration of both

of these complex segments was more similar to a simple seg-

ment in English than to a sequence (i.e., /kw/ and /nd/). It was

assumed that the correspondence chosen would be optimal,

but the alternative was not tested.

During a pilot phase, different phone variants were tried

for two other phonological contrasts in YM: / / and /?/. The
voiced bilabial fricative frequently varies in its production

between a voiced frictionless bilabial continuant , a voiced

bilabial fricative [ ], and a voiced bilabial stop [b]. A /b/

phone was used during the pilot phase, but agreement was

quite poor. A /w/ phone provided a much better match for this

YM phoneme. The glottal stop is frequently lenited or pro-

duced as creaky phonation overlaid on the adjacent vowels

and consonants. An /h/ phone was used during the pilot phase

for this, but agreement was found to improve with a /t/ phone.

While English does not have phonologically contrastive glot-

talization, a frequent realization of coda /t/ contains creaky

phonation, e.g. [t
~
] (Huffman, 2005). Thus, there is a high

degree of similarity between YM and English sequences with

pre-consonantal glottalization. For instance, compare English

“chutney” [’t
Ð
Æ .ni] with YM “kill(s)” [

Ð
a?4.ni24].

The phone set for HMALIGN differs from that of P2FA as

the former contains separate stop allophones for voiceless

unaspirated English phones [p, t, k] (PP, TT, KK), voiceless

aspirated English phones [ph, th, kh] (HP, HT, HK), and the

glottalized English phone [ ] (TQ). As YM contains only

unaspirated voiceless stops, these phones from HMALIGN were

used. YM glottal stops were coded with the TQ phone from

HMALIGN (rather than the ½t� of P2FA).

We ran the forced aligners as follows: First, each forced

aligner took a sequence of words and the associated speech

utterance as an input. In each model, a pronunciation diction-

ary was constructed where the pronunciations of the YM

word were coded using the phone set specific to that model.

Table IV shows the phonemic inventory of YM and phone

correspondences for each aligner, along with its phonetic

exponents in brackets. For example, a YM word, /ndu4ba2/
“he/she falls backward” is coded as /NN UW1 WW AA1/ in

HMALIGN and /N UW1 W AA1/ in P2FA. Note that all vowels

were coded as stressed (marked with “1” after each vowel).

During the pilot phase, unstressed vowel phones were used.

This resulted in substantial loss of agreement. Agreement

improved when all vowels were treated as equally “stressed.”

Unlike English, Mixtec does not have substantial vowel

reduction despite having differences in stress. Second, the

YM speech data were downsampled from 48 to 16 kHz for

both P2FA and HMALIGN to achieve parity between the aligners’

training data and the Mixtec test data. To compare hand-

labeling and results from the two models with one another,

we needed to align all the datasets (the hand labeling, the

P2FA labeling, and the HMALIGN labeling) together. We

excluded tokens with missing phones and extraneous pauses.

In total, 5 of the 261 words were excluded from all speakers.

The extraneous pauses came entirely from short pauses (sp)

that were inserted by P2FA. In total, 5232 short pauses were

inserted out of 83 768 alignments, representing 6.2% of the

data. HMALIGN did not insert any short pauses. Both aligners

placed boundaries with 10ms temporal resolution.

C. Statistical measures of aligner performance

Start and end points for each phonemic interval were

extracted from the hand-labeled and the force aligned text-

grid files using a script written for PRAAT (Boersma and

Weenink, 2012). The relative differences between the seg-

ment boundaries for the hand-labeled files and the force-

aligned files were compared. This comprised a total of

54 540 comparable segments. In addition to the temporal

data, all words were coded for the presence of glottalization,

vowel nasalization, size (monosyllabic/disyllabic), and tonal

category. These categories were used to organize the data

and to test how agreement was influenced by the phonologi-

cal contrasts in the language. Boundary agreement and statis-

tical tests were analyzed using R (R Development Core

Team, 2012). Statistical tests were run for each phonological

category, corresponding to the separate result sections

below. In each test, lexical items were treated as a random

effect in a linear mixed effects model and the choice of

aligner (P2FA or HMALIGN) was treated as a fixed effect. In

mixed effects models, p-values are calculated not based on a

standard degrees of freedom value, but on the upper bound

of the degrees of freedom (¼total observations � fixed

effects parameters). This is typical for mixed effects models,

as the estimation of the degrees of freedom is not

clearly established (Baayen, 2008; Bates, 2005). Two sets of

p-values were obtained from the mixed effects model, one

using Markov-chain Monte-Carlo (MCMC) sampling and

another based on the t-distribution. The p-values reported

here derive from the t distribution, but were validated against

those from the MCMC simulation, which adjusts for random

effects. The value given with the t-statistic, e.g., t[num],

reflects the upper bound on the degrees of freedom.

III. AGREEMENTAND ALIGNER RESULTS

A. Results 1: General alignment accuracy

Agreement was fairly good for both aligners.

Agreement of HMALIGN was 70.9% in 30ms compared to

65.7% in 30ms for P2FA. Table V shows agreement at differ-

ent thresholds.

TABLE V. Agreement with hand-labeling.

Threshold P2FA HMALIGN

10ms 32.3% 40.6%

20ms 52.3% 61.4%

30ms 65.7% 70.9%

40ms 74.8% 81.2%

50ms 79.6% 86.7%
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Agreement for HMALIGN was better than for P2FA. The

results of a linear mixed effects model showed a strong effect

of aligner on agreement, both at start points (t[142734]¼ 6.2,

p< 0.001) and at endpoints (t[142734]¼ 6.0, p< 0.001). As

stated, agreement of HMALIGN was 70.9% in 30ms compared

to 65.7% in 30ms for P2FA. This reflects a 15.2% error reduc-

tion between the models. Error reduction reflects the quotient

of the error differences divided by the larger error value, e.g.,

((100–65.7)–(100–70.9))/(100–65.7).

Agreement for both aligners was low in comparison with

forced alignment on models trained on their target language,

which typically average above 80% within 20ms (Hosom,

2009; Malfrère et al., 2003). This pattern is expected though,

as the alignment systems were not trained on YM data.

Nevertheless, the agreement levels reported in Table V hide

some important differences in how different sound types and

the position of a segment in a word influence forced align-

ment. Figure 1 shows agreement and segmental start and end

points for consonants and vowels for each forced aligner.

Note that while the median agreement in Fig. 1 is centered

around zero (indicating overall good agreement), we are

particularly interested in the amount of error in alignment,

represented by the larger quartiles in the boxplot.

Figure 1 shows greater variability in agreement for con-

sonants at starting points than at endpoints and for vowels at

endpoints than at starting points. Agreement at a consonant

starting point corresponds to both #-C and V-C transitions,

while agreement at a consonant endpoint corresponds only to

C-V transitions (as YM has no codas). Agreement at a vowel

starting point corresponds only to the C-V transition, while

agreement at a vowel endpoint corresponds to both the V-C

and the V-# transition. Generally speaking, the acoustic cues

to the C-V transition are stronger than those at the V-C transi-

tion (Ohala, 1990; Manuel, 1991; Hura et al. 1992). This pat-
tern influences the alignment measurements. Further, the

boundary between a vowel and subsequent silence is some-

what arbitrary and differences between automatic and hand-

aligned data for those boundaries may reflect sensitivity to

different cues with human labelers; humans may be more sen-

sitive to amplitude and voicing features, while automatic

aligners may weigh spectral shape features more heavily.

Given that the corpus consisted solely of words spoken

in isolation, many segments had to be aligned at a word-

boundary. The acoustic cues separating silence from these

boundaries may not be sufficiently strong for precise esti-

mates of alignment. Such conditions occur when, for

instance, a voiceless stop consonant is the word-onset or if a

speaker gradually devoices a word-final vowel. A linear

mixed-effects model was used to examine the effect of these

boundaries on agreement, with boundary and aligner treated

as independent variables. Boundaries were coded as edge or

non-edge. Agreement at edges corresponded to either end-

point agreement for final vowels or start point agreement for

initial consonants. Agreement at non-edges corresponded to

start point agreement in the remainder of the cases. Both

main effects were significant. The data in Table VI show dif-

ferences in agreement at word edges and non-edges.

Agreement at non-edges was significantly better than agree-

ment at edges (t[85728]¼ 3.8, p< 0.001). At 30ms, the av-

erage agreement at edges was 63.8% for P2FA and 54.0% for

HMALIGN. The average agreement at non-edges was 72.3%

for P2FA and 81.5% for HMALIGN. These values reflect an error

reduction of 23.4% for P2FA and 59.8% for HMALIGN.

Agreement for HMALIGN was significantly better than for P2FA

(t[85728]¼ 10.6, p< 0.001).

There was a significant interaction between the forced

aligner and boundary type. Agreement was higher for P2FA

than HMALIGN at word boundaries (21.3% error reduction) but

higher for HMALIGN than P2FA at non-boundaries (33.3% error

reduction) (t[85728]¼ 10.2, p< 0.001).

B. Results 2: Category-specific effects on alignment
accuracy

Just as the position of a segment within the word influen-

ces agreement for each of the forced aligners, phonological

FIG. 1. Agreement for consonants and vowels across aligners.

TABLE VI. Agreement with hand-labeling across positions.

P2FA by position HMALIGN by position

Threshold #-C C-V V-C V-# #-C C-V V-C V-#

10ms 11.9% 59.4% 40.6% 48.1% 23.2% 54.6% 46.0% 33.6%

20ms 35.7% 70.3% 59.6% 54.7% 43.5% 78.6% 68.9% 40.8%

30ms 64.3% 77.6% 67.9% 63.2% 58.1% 85.3% 77.6% 49.9%

40ms 84.6% 81.5% 73.0% 71.7% 82.6% 89.0% 83.2% 59.6%

50ms 91.8% 84.3% 76.9% 77.4% 92.2% 91.3% 87.0% 69.2%
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classes also differ in agreement. Three types of classes were

considered here: Consonantal phonological classes (e.g., stop,

fricative, nasal); vowel quality and nasalization; and tone.

1. Consonantal phonological class

Consonant data was organized into six different natural

classes: stops, fricatives, affricates, glottal stops, nasals, and

approximants, and analyzed using a linear mixed effects

model with natural class and aligner as independent varia-

bles. Neither of the main effects were significant, but agree-

ment for stops was near significance (t[56916]¼ 1.9,

p¼ 0.06). Figure 2 shows agreement for both aligners for

each consonant class and Table VII shows agreement at dif-

ferent thresholds.

A significant aligner x stop interaction occurred as well

(t[56916]¼ 3.6, p< 0.001). This reflected lower error in

agreement for stops with HMALIGN than with P2FA. In general,

stops fricatives, affricates, and approximants showed better

agreement with HMALIGN, with an average agreement of

89.0% vs 81.6% at 30ms. This reflects an error reduction of

40.2% between aligners. Agreement was slightly better for

nasals with P2FA (92.0% at 30ms) than with HMALIGN (89.3%

at 30ms). This reflects an error reduction of 25.2%. Overall,

agreement was worst for glottal stops; these are considered

in more detail in Sec. III C 2.

2. Vowel quality and nasalization

Vowels were marked for quality (i, e, a, u) and for nasal-

ity (nasal or oral). While nasal vowels were not distinguished

from oral vowels during alignment, this categorization

allowed a test of whether vowel nasality affected alignment

accuracy; if collapsing across the two kinds of nasality was

indeed benign, there should be no difference in those meas-

urements. For vowel quality, agreement at start points and

endpoints was analyzed using a linear mixed effects model

with vowel quality and aligner as independent variables.

There was a significant effect of the aligner on agreement for

all vowels (t[52146]¼ 7.4, p< 0.001). For all vowels except

/i/, agreement was higher with HMALIGN than with P2FA. The

average agreement for vowels is 73.1% at 30ms with P2FA

and 80.5% at 30ms with HMALIGN. This reflects an error

reduction of 27.5% between aligners. A significant general

effect of vowel quality on agreement was also found for /i/

(t[52146]¼ 2.3, p< 0.05). For both aligners, agreement was

better for /i/ than for the other vowels, with the exception of

/a/ for HMALIGN. Figure 3 shows agreement for each vowel

quality for each aligner. Agreement values at different

thresholds for each aligner are given in Table VIII.

In order to examine agreement for nasal and oral vowels,

a linear mixed effects model with vowel nasality and aligner

as independent variables was run. No significant effect of

FIG. 2. Agreement for consonant classes across aligners.

TABLE VII. Agreement with hand-labeling across natural classes at

endpoints.

Threshold Stop Fricative Affricate Nasal Approximant

P2FA 10ms 42.3% 65.6% 43.5% 65.2% 26.1%

20ms 59.0% 91.5% 77.6% 87.4% 50.4%

30ms 65.2% 98.3% 94.6% 92.0% 68.1%

40ms 69.8% 99.2% 98.8% 93.2% 80.2%

50ms 73.7% 99.3% 99.1% 94.2% 87.1%

HMALIGN 10ms 63.1% 77.5% 77.1% 48.9% 28.3%

20ms 78.4% 99.0% 98.8% 83.3% 53.5%

30ms 83.6% 99.6% 99.3% 89.3% 73.3%

40ms 87.3% 99.7% 99.8% 90.6% 86.1%

50ms 90.2% 99.8% 100% 91.5% 91.4%
FIG. 3. Agreement for vowel qualities across aligners.
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vowel nasality on agreement was found. A significant effect

of aligner on agreement with vowel nasality was found

(t[28030]¼ 3.9, p< 0.001). For HMALIGN, agreement for nasal

vowels was worse (79.1% at 30ms) than for oral vowels

(87.0% at 30ms). The opposite pattern occurred for P2FA;

agreement was more accurate for nasal vowels. Figure 4

shows agreement for each aligner with nasal vowels. Table

IX shows agreement values at different thresholds.

For oral vowels, agreement was higher with HMALIGN

than with P2FA. Agreement was 87.0% at 30ms with HMALIGN

but 74.8% at 30ms with P2FA. This reflects an error reduction

of 48.4%. However, this finding is correlated with the higher

agreement values for nasal consonants with P2FA discussed

in the previous section. Due to the process of progressive

nasalization (see Sec. I B), vowels following a nasal conso-

nant are nasalized in YM. Thus, agreement of vowels at

starting points following nasal consonants was, as expected,

higher for P2FA than for HMALIGN.

3. Tone

Generally speaking, a language’s word-level prosody is

not considered as a factor in forced alignment. Tone may be

explicitly used as a first step in alignment of tone languages

(Lei et al., 2005), but there is no evidence that excluding it

would cause an increase in error. Yet, there are reasons to

predict that tone or lexical stress may influence segment-

level forced alignment. There is a relationship between the

amplitude envelope of the acoustic signal and F0 (Whalen

and Xu, 1992). Thus, it stands to reason that abrupt changes

in amplitude, correlated with F0 changes, can result in mis-

alignment, especially if the forced aligner relies heavily on

such amplitude perturbations.

The tonal inventory of YM is quite large in compari-

son to other tonal languages (Yip, 2002), if we treat the

syllable as the tonal domain. If we treat the mora as the

tonal domain, the inventory is much simpler. Current prac-

tice is to treat the syllable as the domain of tone. Rather

than having the large number of categories where each

tone is treated separately, each tone was placed into a

tonal shape category: level, falling, rising, concave, con-

vex, double rise (e.g., 14.14, with the dot dividing the

moras), and double fall (e.g., 31.32). Agreement was tested

in a linear mixed effects model with tonal category and

aligner as the independent variables. The results showed

no main effects in agreement for specific tonal categories,

however, there was a significant interaction between tonal

category and aligner for P2FA. Agreement was lower for

rising tones and double rising tones with P2FA than with

HMALIGN (t[51834]¼ 2.3, p< 0.05, t[51834]¼ 2.3, p< 0.05,

respectively).

C. Results 3: Phoneme-specific effects on alignment
accuracy

Certain language-specific phones may cause particular

problems for forced alignment. In YM, two phonological

contrasts are notably different from the English data on

which each aligner was trained: unaspirated stops and glot-

talization. Each of these contrasts was considered separately

in order to highlight how forced alignment performs with

particular language-specific patterns.

1. Unaspirated stops

YM has four unaspirated stops (/p, t, k, kw/) though

only two categories were used for the purposes of align-

ment (/t, k/). The /p/ phoneme is quite rare in native words

and only occurred on one word in the corpus, so it was

excluded. The /kw/ phoneme was more common, but it

could not be easily matched to a single phone in the phone

set for either aligner, so it was coded as /k/. Agreement of

the two stop phones was examined with a linear mixed

effects model with the specific phoneme label and the

aligner as the independent variables. Results for both

TABLE VIII. Agreement with hand-labeling across vowel qualities at start

points.

Threshold /i/ /e/ /a/ /o/ /u/

P2FA 10ms 47.2% 40.2% 54.5% 41.1% 42.5%

20ms 71.5% 59.1% 74.2% 60.3% 62.2%

30ms 82.7% 66.8% 80.4% 64.5% 70.9%

40ms 88.2% 70.4% 84.0% 67.4% 74.5%

50ms 91.8% 73.5% 86.4% 70.9% 77.0%

HMALIGN 10ms 42.6% 43.0% 61.9% 49.0% 47.7%

20ms 70.8% 67.0% 85.4% 71.6% 70.0%

30ms 80.7% 73.5% 90.4% 78.8% 78.9%

40ms 86.3% 79.0% 93.0% 82.9% 83.3%

50ms 89.5% 83.0% 94.6% 86.8% 86.4%

FIG. 4. Agreement for vowel nasalization across aligners.

TABLE IX. Agreement with hand-labeling for nasal vowels in disyllabic

words.

P2FA HMALIGN

Threshold Oral Nasal Oral Nasal

10ms 45.1% 55.2% 54.3% 47.6%

20ms 65.3% 80.9% 77.9% 74.1%

30ms 74.8% 86.9% 87.0% 79.1%

40ms 80.8% 88.2% 92.3% 81.3%

50ms 84.8% 89.3% 95.0% 82.8%
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forced aligners are shown in Fig. 5. Agreement values are

given in Table X.

There was a significant main effect of Aligner on stop

agreement (t[19410]¼ 5.3, p< 0.001). Agreement for stops

was higher for HMALIGN (91.5% at 30ms) than for P2FA

(68.5% at 30ms). This reflects an error reduction of 25.1%

across aligners. There was also a significant interaction

between aligner and agreement for /t/ compared to /k/ for

P2FA (t[19410]¼ 2.3, p< 0.05). Agreement for /t/ was sub-

stantially worse (61.3% at 30ms) than for /k/ (75.6% at

30ms). Agreement for /t/ was substantially better with

HMALIGN (98.0% at 30ms) than for P2FA, with an error reduc-

tion of 37.4%. An explanation for this pattern is provided in

Sec. IV.

2. Positional effects on glottal stop agreement

Glottalization in YM occurs in two contexts, intervocali-

cally (V?V) and before a sonorant consonant in word-medial

position (V?NV). The latter position is akin to allophonic

American English /t/, but the former is unlike any typical

pattern in American English phonology, which should result

in lower agreement. For each aligner, agreement at start

points and endpoints for glottal stops was assessed using a

linear mixed effects model with position and aligner as inde-

pendent variables. Figure 6 shows agreement at each posi-

tion for each aligner.

Both main effects were significant. There was a signifi-

cant effect of the aligner on agreement for glottal stops

(t[6642]¼ 4.2, p< 0.001). Agreement was better with

HMALIGN (33.2% at 30ms) than with P2FA (10.9% at 30ms).

There was also a significant main effect of position on

agreement (t[6642]¼ 4.9, p< 0.001). Agreement was worse

for intervocalic glottalization than for pre-consonantal glot-

talization. Finally, there was a significant interaction

between the aligner and position (t[6642]¼ 9.6, p< 0.001).

Agreement for glottal stops in the /V?V/ context was sub-

stantially worse for P2FA (10.3% at 30ms), than for HMALIGN

(35.7% at 30ms). This reflects an error reduction of 71.1%

in HMALIGN. Agreement for glottal stops in the /V?CV/ con-
text was 11.5% at 30ms for P2FA, but 30.8% at 30ms for

HMALIGN. This reflects an error reduction of 62.6% with

HMALIGN. Table XI shows agreement values at different

thresholds for each aligner.

IV. DISCUSSION

A. The utility of forced alignment for language
documentation corpora

The present results indicate that a sizable majority of

boundaries are within 30ms of hand labeling for our data

set. This means that automatic alignments should be a useful

beginning point for labeling a new dataset. In an ideal situa-

tion, phonetic research on every language would be assisted

by forced alignment systems specifically built for the lan-

guage; alignments are better for the trained language than

for others. The work here is novel since we investigate the

temporal accuracy of alignment using an aligner trained on a

different source language. To date, we know of no such

study that examines the temporal aspects of alignment using

an aligner trained on a different source language. This may

relate to the differing goals of those working in speech tech-

nology and those working in phonetics. The latter may be

more interested in the details of aligner accuracy because

precision in alignment is considered a necessity for the auto-

matic extraction of acoustic data for phonetic research.

In the case of endangered and minority languages, con-

ditions are frequently far from ideal. The initial stage of

corpus transcription requires substantial linguist and native-

speaker expertise and time. Segmentation of these corpora

for the purposes of building a language-specific aligner often

falls outside the purview of documentation projects and it

may require expertise that the documentary linguist does not

possess. Given these conditions, the process of corpus seg-

mentation can be aided by forced aligners trained on other,

more common languages.

There are a few factors that one must consider in selecting

such an aligner. First, the work here has shown that an aligner

trained with a larger set of allophonic phones can improve

agreement for a language on which the aligner was not trained.

Essentially, it is necessary to find an aligner with a phone set

which reasonably closely matches the language’s phonological

system. Second, the data on which the aligner was trained can

play an important role in the level of agreement. It is necessary

to consider the nature of the corpus one wishes to segment

prior to choosing the aligner. If the corpus consists of careful

elicitations or word lists, an aligner based on read speech may

do better than one based on spontaneous speech. If it consists

of narratives and running dialogue, then an aligner based on

spontaneous speech may be more appropriate. In general,

alignment was poorer at utterance-initial and utterance-final

FIG. 5. Agreement for stops across aligners.

TABLE X. Agreement with hand-labeling for stops across aligners.

P2FA HMALIGN

Threshold /t/ /k/ /t/ /k/

10ms 40.7% 52.5% 83.5% 62.6%

20ms 53.8% 71.3% 97.0% 79.2%

30ms 61.3% 75.6% 98.0% 84.9%

40ms 68.1% 77.9% 98.3% 88.3%

50ms 73.3% 79.6% 98.5% 91.3%
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positions for YM. This may be due to the language-specific na-

ture of syllables in YM, which never have a coda. Languages

with codas may match English-trained aligners better. This

should be taken under consideration as well.

Once such factors have been considered, what alignment

quality might one expect from forced alignment? In the data

for HMALIGN, agreement was 71% at 30ms and only 42% at

10ms. While this may seem reasonably accurate for the YM

data, the time needed to manually adjust erroneous data is a

potential problem. In the current data, it might take longer to

fix the remaining 29% (or 58%) than to simply hand-label all

segments from scratch. Such a possibility is disheartening, but

there is evidence that such adjustments might take less time

than expected. First, not all natural classes are equally badly-

aligned. In the current data with HMALIGN, fricatives and affri-

cates were aligned at 99% at 20ms, while stops and nasals

were aligned at 80% at 20ms. Among consonants, agreement

was lowest for approximants. In the case of YM, these differ-

ences make more targeted manual adjustments possible.

Adjustments to many obstruents can be ignored, while approx-

imants must be more carefully examined. Moreover, since

agreement for forced alignment is much lower at utterance

boundaries, these positions can be given more attention than

word-internal segmental boundaries. An alternative option is to

use the initial alignment from an English aligner, such as

HMALIGN, as the starting place for retraining. This would bring

the phone models into better alignment with the acoustics and

further reduce the amount of manual adjustment that is needed.

The importance of agreement accuracy may also vary

depending on the motivation for the forced alignment. If the

goal of alignment is an examination of non-local phonetic

measures, like overall duration, formant structure, and mean

F0, then higher error rates are less consequential (assuming

that error agreement follows a relatively normal distribu-

tion). If the goal is to examine phonetic measures for which

very accurate alignment is essential, like stop VOT, formant

transitions, and voicing-related F0 perturbations, then sub-

stantial error in forced alignment is more problematic. While

forced alignment with high agreement is important for pho-

netic data analysis, the presence of some error is less trouble-

some for other research goals.

B. Comparison between aligners

In general, greater agreement was found for the YM data

with HMALIGN than with P2FA. The main cause for the differ-

ence in agreement between aligners was assumed to be the

phone set. The aligners had different phone sets. HMALIGN uses

a phone set which is largely allophonic for English (context-

sensitive). This includes variants for clear and velarized /l/,

unaspirated and aspirated stops, syllabic sonorants, and the

positional variants of /�/. P2FA uses a context independent

phone set which is rather similar to the phonemic inventory

for English and does not contain consonantal allophones.

Among the consonants, the largest difference in agreement

between the aligners was for stops. As YM has only unaspi-

rated stops, the unaspirated stop phone set from HMALIGN was

a closer fit for the language than the more generic phone set in

P2FA. Including these additional allophones in the phone set

was likely responsible for the error reduction in HMALIGN.

A similar inference can be made regarding agreement

for the YM glottal stop. The phone set of HMALIGN included

the glottalized allophone of English /t/, [ ], as a separate

phone. While agreement was low for glottal stops for both

aligners, there was a substantial improvement in agreement

with intervocalic glottal stops with HMALIGN. This difference

in agreement can only be related to this additional phone in

HMALIGN. Notably, no differences in agreement between

aligners occurred for pre-consonantal glottal stop.

A few smaller differences between aligners also

emerged. For example, agreement for w vowels with a rising

tone was significantly better with HMALIGN than with P2FA.

This difference may be attributable to the training data.

While the topic has not been explored in great detail,

research on speech rate shows a rate reduction during read

speech compared to spontaneous speech (Laan, 1997 on

English, Hirose and Kawanami, 2002 on Japanese). The

delay of an F0 peak in the production of pitch accents (peak-

FIG. 6. Agreement for glottal stops across aligners.

TABLE XI. Agreement at start points with hand-labeling for glottal stops

across aligners.

P2FA HMALIGN

Threshold V?V V?CV V?V V?CV

10ms 2.0% 2.7% 13.1% 9.5%

20ms 5.7% 6.4% 25.7% 19.4%

30ms 10.3% 11.5% 35.7% 30.8%

40ms 15.7% 18.9% 46.3% 43.5%

50ms 21.4% 28.2% 59.6% 57.4%
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delay) is closely correlated with the duration of the syllable

on which the accent is aligned (Silverman and

Pierrehumbert, 1990). It is possible that forced alignment

based on spontaneous speech training data, like P2FA, will

contain a greater proportion of words where F0 maxima

occur on the following syllable, due to peak delay. By con-

trast, a forced aligner trained on read speech, like HMALIGN,

might contain a smaller proportion of such words. For the

YM data, F0 maxima are aligned at the right edge of the

vowel (DiCanio et al., 2012). P2FA would have a disadvant-

age with the alignment of YM vowels with rising tones.

In addition, there may have been an effect of the match

or mismatch of the type of utterances the aligners were

trained on. P2FA is trained on the SCOTUS corpus, which

contains speech from running court arguments (Yuan and

Liberman, 2008). HMALIGN is trained on the TIMIT corpus,

which contains only read speech. While SCOTUS arguments

are not completely spontaneous (often being rehearsed), they

are much less scripted than read speech. Given the training

data, HMALIGN can be expected to be better suited to the forced

alignment of words produced in isolation. This is indeed

what happened with the YM corpus, which consists of words

in isolation. Moreover, as P2FA is trained on running speech,

one anticipates that it will be more sensitive to pauses than

HMALIGN. Running speech is characterized by longer and

more frequent pauses, more frequent hesitations, and shorter

prosodic units (see Mehta and Cutler, 1988, and references

therein). Here, out of 83 768 aligned boundaries, 5232 short

pauses were inserted by P2FA. None were inserted by

HMALIGN. These additional pauses were inserted during back-

ground noise in the recording or word-medially during words

with silent intervals, e.g., during a long closure duration or

during glottal closure with /?/. Further tests of the two

aligners on the same language but with spontaneous speech

(more similar to SCOTUS) would be needed to test this

possibility.

V. CONCLUSIONS

Comparisons between the P2FA and HMALIGN forced align-

ment systems show the latter system to provide better agree-

ment than the former for corpus data from Yolox�ochitl
Mixtec. This finding confirms the two hypotheses tested in the

current study. First, forced alignment systems based on differ-

ent languages can be successfully utilized for under-resourced

languages, of which endangered languages are a particular

case. Second, the inclusion of context-sensitive phones

(HMALIGN) results in a 15.2% error reduction over a general set

(P2FA), supporting the idea that context-sensitivity improves

aligner performance (Sim and Li, 2008a, 2008b). In particular,

agreement accuracy differences were most robust for stop

consonants and for glottal stops. Moreover, these findings also

argue that the validity of a forced aligner for the segmentation

of a novel language depends closely on the style of discourse

that is to be aligned. In general, data from endangered and mi-

nority language corpora have presented unique problems for

automatic methods of segmentation. Given the paucity of

training corpora and the difficulty in obtaining automatic

aligners for such languages, forced alignment systems based

on different languages offer a useful alternative or supplement

to hand-labeled segmentation.
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