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ABSTRACT 

 
Speech translation (ST) is an enabling technology for cross-lingual 
oral communication. A ST system consists of two major 
components: an automatic speech recognizer (ASR) and a machine 
translator (MT). Nowadays, most ASR systems are trained and 
tuned by minimizing word error rate (WER). However, WER 
counts word errors at the surface level. It does not consider the 
contextual and syntactic roles of a word, which are often critical 
for MT. In the end-to-end ST scenarios, whether WER is a good 
metric for the ASR component of the full ST system is an open 
issue and lacks systematic studies. In this paper, we report our 
recent investigation on this issue, focusing on the interactions of 
ASR and MT in a ST system. We show that BLEU-oriented global 
optimization of ASR system parameters improves the translation 
quality by an absolute 1.5% BLEU score, while sacrificing WER 
over the conventional, WER-optimized ASR system. We also 
conducted an in-depth study on the impact of ASR errors on the 
final ST output. Our findings suggest that the speech recognizer 
component of the full ST system should be optimized by 
translation metrics instead of the traditional WER.  
 

Index Terms— Speech translation, speech recognition, 
machine translation, translation metric, word error rate, BLEU 
score optimization, log-linear model. 
 

1. INTRODUCTION 
 
Speech translation (ST) is an important technology for cross-
lingual (one-way or two-way) oral communication, whose societal 
role is rapidly increasing in the modern global and interconnected 
informational age. ST technology as key enabler of universal 
translation is one of the most promising and challenging future 
needs and wants in the coming decade [15].  

A ST system consists of two major components: automatic 
speech recognition (ASR) and machine translation (MT). Over the 
past years, significant progress has been made in the integration of 
these two components in the end-to-end ST task 
[2][7][9][10][16][20]. In [10], a Bayes-rule-based integration of 
ASR and MT was proposed, in which the ASR output is treated as 
a hidden variable. In [19], a log-linear model was proposed to 
directly model the posterior probability of the translated output 
given the input speech signal, where the feature functions are 
derived from the overall outputs of the ASR model, the translation 
model, and the Part-of-Speech language model. This set of work is 
later extended with the use of the phrase-based MT component and 
a lattice/confusion-network based interface between ASR and MT 
[8][13]. 

Despite their importance, there have been relatively few 
studies on the impact of ASR errors on the MT quality. Unlike 

ASR, where the widely used metric is word error rate (WER), the 
translation accuracy is usually measured by the quantities 
including BLEU (Bi-Lingual Evaluation Understudy), NIST-score, 
and Translation Edit Rate (TER) [12][14]. BLEU measures the n-
gram matches between the translation hypothesis and the 
reference(s). In [1][2], it was reported that translation accuracy 
degrades 8 to 10 BLEU points when the ASR output was used to 
replace the verbatim ASR transcript (i.e., assuming no ASR error). 
On the other hand, although WER is widely accepted as the de 
facto metric for ASR, it only measures word errors at the surface 
level. It takes no consideration of the contextual and syntactic roles 
of a word. In contrast, most modern MT systems rely on syntactic 
and contextual information for translation. Therefore, despite the 
extreme example offered in [1], it is not clear whether WER is a 
good metric for ASR in the scenario of ST. Since the latest ASR 
systems are usually trained by discriminative techniques where 
models are optimized by the criteria that are strongly correlated 
with WER (see an overview paper in [4]), the answers to the 
question of whether WER is a good metric for training the ASR 
component of a full ST system become particularly important. 

The question is addressed in our recent investigation, where 
we use a log-linear model to integrate the ASR and MT modules 
for ST. In our approach, the ASR output is treated as a hidden 
variable, and the posterior probability of a <ASR-output, MT-
output> pair given the speech signal is modeled through a regular 
log-linear model using the feature functions derived from hidden 
Markov model (HMM)-based ASR and a hierarchical phrase-based 
MT [3]. These “features” include acoustic model (AM) score, 
source and target language model (LM) scores, phrase level and 
lexicon level translation model (TM) scores, etc. All the 
parameters of the log-linear model are trained to directly optimize 
the quality of the final translation output measured in BLEU. On a 
ST task of oral lecture translation from English to Chinese, our 
experimental results show that the log-linear model and global 
optimization improve the translation quality by 1.5% in the BLEU 
score. Our investigation also provides insights to the relationship 
between the WER of the ASR output and the BLEU score of the 
final ST output. The experimental results show a poor correlation 
between the two, suggesting that WER is not a good metric for the 
ASR component of the ST system. In particular, using real 
examples extracted from the test data, we further isolate two 
typical situations where ASR outputs with higher WER can lead to 
counter-intuitively better translations. These findings suggest that 
the speech recognizer in a ST system should be trained directly by 
the translation metric of the full system such as the BLEU score, 
instead of the local measure of WER.  
 

2. SPEECH TRANSLATION SYSTEMS  
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A general framework for ST is illustrated in Fig. 1. The input 
speech signal X is first fed into the ASR module. Then the ASR 
module generates the recognition output set {F}, which is in the 
source language. The recognition hypothesis set {F} is finally 
passed to the MT module to obtain the translation sentence E in the 
target language. In our setup, an N-best list is used as the interface 
between ASR and MT. In the following, we use F to represent an 
ASR hypothesis in the N-best list.  
 
 
 

Fig. 1. Two components of a full speech translation system 
 
2.1. The unified log-linear model for ST 
 
The optimal translation ܧ  given the input speech signal X is 
obtained via the decoding process according to 
ܧ  = argmaxா  (1) (ܺ|ܧ)ܲ
 
Based on law of total probability, we have, 
(ܺ|ܧ)ܲ  =  ,ܧ)ܲ ி(ܺ|ܨ  (2) 

 
Then we model the posterior probability of the (E, F) sentence pair 
given X through a log-linear model: 
,ܧ)ܲ  (ܺ|ܨ = 1ܼ ݔ݁ ൝ ,ܧ)݈߮݃ߣ ,ܨ ܺ) ൡ (3) 

 
where ܼ = ∑ ∑}ݔ݁ ,ܧ)݈߮݃ߣ ,ܨ ܺ) }ா,ி  is the normalization 
denominator to ensure that the probabilities sum to one. In the log-
linear model, {߮(ܧ, ,ܨ ܺ)}  are the feature functions empirically 
constructed from E, F, and X. The only free parameters of the log-
linear model are the feature weights, i.e., ߉ = {ߣ}  . Details of 
these features used in our experiments are provided in the next 
section. 
 
2.2. Features in the ST model 
 

The full set of feature functions constructed and used in our 
ST system are derived from both the ASR and the MT [2][3] 
modules as listed below: 

 Acoustic model (AM) feature:߮ெ(ܧ, ,ܨ ܺ) =  ,(ܨ|ܺ) 
which is the likelihood of speech signal X given a 
recognition hypothesis F, computed from the AM of the 
source language.  

 Source language model (LM) feature: ߮ௌெ(ܧ, ,ܨ ܺ) = ܲெ(ܨ), which is the probability of F computed from a 
N-gram LM of the source language. 

 ASR hypothesis length: ߮ௌௐ(ܧ, ,ܨ ܺ) =  ݁|ி|  is the 
exponential of the word count in the source sentence F. 
(This is also referred to as word insertion penalty.) 

 Forward phrase translation feature: ߮ிଶா(ܧ, ,ܨ ܺ) = ்ܲெ(ܨ|ܧ) = ∏ ൫݁̃ห ሚ݂൯,  where ݁̃  and ሚ݂  are the k-
th phrase in E and F, respectively, and (݁̃| ሚ݂) is the 
probability of translating ሚ݂ to ݁̃. 

 Forward word translation feature: ߮ிଶா௪ௗ(ܧ, ,ܨ ܺ) = ்ܲெ௪ௗ(ܨ|ܧ) = ∏ ∏ ∑ |,݁) ݂,) , where ݁,  is 
the m-th word of the k-th target phrase ݁̃,  ݂, is the n-
th word in the k-th source phrase ሚ݂, and (݁,| ݂,) is 
the probability of translating word ݂, to word ݁, . 
(This is also referred to as the lexical weighting feature.) 

 Backward phrase translation feature: ߮ாଶி(ܧ, ,ܨ ܺ) = ்ܲெ(ܧ|ܨ) = ∏ ) ሚ݂|݁̃) , where ݁̃  and ሚ݂  are 
defined as above.  

 Backward word translation feature: ߮ாଶி௪ௗ(ܧ, ,ܨ ܺ) = ்ܲெ௪ௗ(ܧ|ܨ) = ∏ ∏ ∑ ) ݂,|݁,) , where ݁, and ݂, are defined as above. 
 Count of NULL translations: ߮ே(ܧ, ,ܨ ܺ) =  ݁|ே௨(ி)| 

is the exponential of the number of the source words that 
are not translated (i.e., translated to NULL word in the 
target side). 

 Count of phrases: ߮(ܧ, ,ܨ ܺ) =  ݁|{൫̃ೖ,ሚೖ൯,ୀଵ,…,}|  is 
the exponential of the number of phrase pairs. 

 Translation length: ்߮ௐ(ܧ, ,ܨ ܺ) =  ݁|ா|  is the 
exponential of the word count in translation E. 

 Hierarchical phrase segmentation and reordering feature: ߮ு(ܧ, ,ܨ ܺ) = ܲ(ܵ|ܧ, (ܨ  is the probability of 
particular phrase segmentation and reordering S, given 
the source and target sentence E and F  [3]. 

 Target language model (LM) feature: ்߮ெ(ܧ, ,ܨ ܺ) = ܲெ(ܧ), which is the probability of E computed from an  
N-gram LM of the target language. 

Unlike the previous work [8][19], we used a hierarchical 
phrase-based MT module [3]. It is based on probabilistic 
synchronous context-free grammar (PSCFG) models that define a 
set of weighted transduction rules. These rules describe the 
translation and reordering operations between source and target 
languages. In training, our MT module is learned from parallel 
training data; and in runtime, the decoder will choose the most 
likely rules to parse the source language sentence while 
synchronously generating the target language output. Compared 
with the simple phrase-based MT [6], the hierarchical MT supports 
the translation of non-contiguous phrases with more complex 
segmentation and re-ordering, and it also gives better translation 
performance [3]. 
 
2.3. Training of feature weights 
 
The free parameters of the log-linear model, i.e., the weights 
(denoted by ߉) of these features, are trained by maximizing the 
BLEU score of the final translation on a dev set, i.e., 
መ߉  = argmax௸ ,∗ܧ)ܷܧܮܤ ,߉)ܧ ܺ)) (4) 
 
where ܧ∗  is the translation reference(s), and ܧ(߉, ܺ)  is the 
translation output, which is obtained through the decoding process 
according to (1) given input speech X and feature weights ߉. In the 
experiments, we adopt Powell’s search [11] to optimize the feature 
weights in our experiments.  
  

3. EXPERIMENTAL RESULTS AND ANALYSIS 
 
3.1. Experimental conditions 
 

 ASR   MT X 
{F} 

E 
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In our experiments, the data for acoustic model training come from 
the switchboard telephony speech data set. A Gaussian mixture 
model (GMM) based continuous density HMM is used for acoustic 
modeling. The MT component is trained on the English-Chinese 
parallel corpus used in NIST MT08 open evaluation, which is 
available from LDC. It includes a total of seven million parallel 
sentence pairs. A hierarchical phrase-based translation system is 
trained from these parallel data [3]. 

We conducted experiments on a Microsoft-internal English-
to-Chinese lecture translation task. The data are from a segment of 
a recorded lecture. The speaker delivered the talk in English, and 
our ST task is to translate it into Chinese. It includes about 31 
minutes of speech. This segment of speech is manually transcribed 
in English, and then translated to Chinese by two human 
translators. The English transcription includes about 313 sentences 
and 5585 words in total.  

Since the spoken utterance data that have both transcription 
and translation references are very limited, we perform a two-fold 
cross-validation in the following evaluation: We first split the 313 
sentences of the data into two equal parts. We then train the log-
linear model using the first half of the sentences and apply the 
trained model to decode the second half of the sentences, and vice 
versa. Finally, we merge the two parts of testing outputs and 
measure the overall results.  
 
3.2. Experimental results 
 
3.2.1. End-to-end ST results  
We first evaluate the end-to-end ST performance using the log-
linear model. The baseline is a simple cascading ST model, i.e., the 
ASR module generates the recognition output, and then it is fed 
into the MT module to generate the final translation output. In the 
baseline, the ASR module is tuned for WER and the MT module is 
tuned for BLEU with clean English text as the input. Since ASR 
and MT operate independently in the cascading model, only the top 
best ASR output is fed into MT. In the log-linear model based 
approach, we used a 20-best list as the interface between ASR and 
MT, and BLEU is used for optimizing the log-linear model’s 
parameters. The evaluation results are tabulated in table 1. 
 
Table 1.  Performance comparison of three ST systems  
ST model/system                BLEU 
Simple cascading model                33.77%   
Log-linear – all features                35.22% * 
Truncated log-linear – ASR features                34.77% * 
* These improvements are both with a statistical significance level 
greater than 99%, computed based on the paired bootstrap re-
sampling method [5] 
 

As shown in Table 1, global optimization of all feature 
weights in the log-linear model gives a 1.45% BLEU score 
improvement compared with the cascading baseline.  

In order to study the effect of the training metric of ASR in 
our ST task, we test a “truncated log-linear model”, which gives a 
controlled setting designed to be the same as the cascading 
baseline, except that the weights of only the three ASR-related 
features are trained, but all remaining MT features’ weights fixed. 
This is equivalent to the cascading baseline except that the speech 
recognizer is tuned by the final BLEU score according to (4). This 
gives a significant and somewhat surprising 1.0% BLEU score 
improvement. By checking the value of the trained ASR feature 
weights, we found that a relatively large LM scale is obtained. Our 

hypothesis is that, by putting more weights on the LM, the ASR 
module is encouraged to generate more grammatically fluent 
English output. Intuitively, this is preferred as the input for the MT 
module, hence higher BLEU scores, despite the fact that this may 
cause an increase of WER. We have conducted more detailed 
analysis to verify our intuition, which we report next. 
 
3.2.2. Analysis on the WER vs. the BLEU score   

Given the observation above, it is hypothesized that in a ST 
task, better (lower) WER does not necessarily lead to better 
translation quality or higher BLEU score. In our experiments 
involving the truncated log-linear model as described above, we 
measured the WER of the ASR’s output vs. the BLEU score of the 
final translation by varying the weights of the source LM features 
over a relevant range, while the word insertion penalty is adjusted 
accordingly so that the same insertion/deletion ratio is maintained. 
The results are presented in Figure 2. 

As shown in fig. 2, the WER of the ASR output reaches the 
lowest point (highest accuracy) with a LM scale = 12. However, 
the BLEU score of the translation at that setting is 33.77%, far 
from optimal yet. When increasing the LM scale gradually, the 
WER starts to get worse (higher), but the BLEU score gets 
improved. This trend keeps until reaching LM Scale = 18, at where 
the BLEU score peaks. Compared with the setting corresponding 
to LM scale = 12, the BLEU score improved by 1.2%. However, 
the WER increased from 19.6% to 24.5%. This clearly shows that 
the optimal setting tuned by WER does not necessarily lead to the 
optimal translation result. Therefore, WER is not a good metric for 
recognizer training for the ST task in our experiments. 
 

 
Fig. 2. WER of the ASR’s output and BLEU score of the final 
translation as a function of the sweeping LM scale  
 
  
3.2.3. The impact of ASR errors on MT 

Going beyond the quantitative analysis as described in the 
last two sections, we also carried out case studies on the impact of 
ASR errors on the MT quality. In Fig. 3, we present two 
representative examples to explain how some ASR outputs with 
more “word errors” can correlate with better translation.  

In the first example, speech recognition output B contains 
one more insertion error than output A. However, the inserted 
function word “to” makes the whole sentence grammatical correct. 
It also provides a critical context that helps determine the meaning 
of “great” as well as the correct word order of the translation. 

In the second example, speech recognition output B contains 
two more errors than output A. However, output B chooses the 
phrase “want to”, which causes two ASR “errors”, instead of the 
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colloquial word “wanna”, which is correctly recognized. The mis-
recognized phrase “want to”, however, is plentifully represented in 
the formal text that is used for MT training and hence leads to 
correct translation. (The remaining recognition errors in both 
outputs A and B for this sentence do not change the meaning, and 
therefore do not cause translation errors.)   

These and numerous other examples from the analysis lead 
to the conclusion that the words that signify syntactic categories 
should be recognized correctly by the ASR component, a task that 
can be accomplished in the BLEU-optimized approach, while the  
use of the conventional WER-optimized approach to train ASR 
does not accomplish this goal.  
 
Example 1: 
Transcript it is great seeing you all here today 
Translation ref.  
Reco A. let's great see you all here today 
Translation A.  
Reco B. let's great to see you all here today 
Translation B.   
 
Example 2: 
Transcript i didn't ever really wanna do this 
Translation ref.  
Reco A. i can never really wanna do this 
Translation A.  
Reco B. i ve never really want to do this 
Translation B.   
Fig. 3. Two examples showing the typical cases that sometimes 
ASR output with more “word errors” can lead to even better 
translation. 
 
 

4. SUMMARY AND FUTURE WORK 
 
In this work, we develop a BLEU-optimized approach for training 
the scale parameters of a log-linear based speech translation 
system. Our experimental results demonstrate the effectiveness of 
this approach in terms of the translation quality, although the ASR 
errors as the intermediate result are found to be higher than the 
cascaded ASR and ML approach where the ASR system is trained 
using the conventional WER criterion. Analysis of the errors 
shows the importance of correct recognition of the key words by 
ASR that are associated with syntactic categories. Missing such 
words in ASR often lead to disastrous MT results, which we have 
observed to occur more frequently with the conventional WER-
optimized approach than with the new BLEU-optimized approach 
as reported in this paper. 

 The technique presented in this paper is a simplistic 
implementation of the more general end-to-end learning 
framework for the ST system design.  We only adjust a very small 
number of the system parameters, i.e., the feature scale parameters 
in the log-linear model, to maximize the translation quality. It has 
been shown that in other tasks such as speech understanding, joint 
optimization of feature functions can further improve the 
performance [17]. In the parallel work reported in [18], we adopt a 
more aggressive approach where the parameters “inside” the 
feature functions, e.g., all the individual N-gram probability values 
of both source and target languages, as well as the phrase table 
probability values, are subject to adjustment so as to maximize the 
end-to-end ST quality.  Our future work will push this even further 

into each of the free parameters in the full ST system including the 
HMM and possibly the feature extraction parameters in ASR. 
More advanced modeling and optimization techniques than 
presented in this paper will be needed in order to accomplish the 
full-scale end-to-end learning and design for ST. 
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