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Abstract

We present an approach to speech recogni-
tion that uses only a neural network to map
acoustic input to characters, a character-level
language model, and a beam search decoding
procedure. This approach eliminates much of
the complex infrastructure of modern speech
recognition systems, making it possible to di-
rectly train a speech recognizer using errors
generated by spoken language understand-
ing tasks. The system naturally handles out
of vocabulary words and spoken word frag-
ments. We demonstrate our approach us-
ing the challenging Switchboard telephone
conversation transcription task, achieving a
word error rate competitive with existing base-
line systems. To our knowledge, this is the
first entirely neural-network-based system to
achieve strong speech transcription results on
a conversational speech task. We analyze
qualitative differences between transcriptions
produced by our lexicon-free approach and
transcriptions produced by a standard speech
recognition system. Finally, we evaluate the
impact of large context neural network charac-
ter language models as compared to standard
n-gram models within our framework.

1 Introduction

Users increasingly interact with natural language
understanding systems via conversational speech in-
terfaces. Google Now, Microsoft Cortana, and
Apple Siri are all systems which rely on spoken
language understanding (SLU), where transcribing
∗Authors contributed equally.

speech is a single step within a larger system. Build-
ing such systems is difficult because spontaneous,
conversational speech naturally contains repetitions,
disfluencies, partial words, and out of vocabulary
(OOV) words (De Mori et al., 2008; Huang et al.,
2001). Moreover, SLU systems must be robust to
transcription errors, which can be quite high depend-
ing on the task and domain.

Modern systems for large vocabulary continuous
speech recognition (LVCSR) use hidden Markov
models (HMMs) to handle sequence processing,
word-level language models, and a pronunciation
lexicon to map words into phonetic pronunciations
(Saon and Chien, 2012). Traditional systems use
Gaussian mixture models (GMMs) to build a map-
ping from sub-phonetic states to audio input fea-
tures. The resulting speech recognition system con-
tains many sub-components, linguistic assumptions,
and typically over ten thousand lines of source code.
Within the past few years LVCSR systems improved
by replacing GMMs with deep neural networks
(DNNs) (Dahl et al., 2011; Hinton et al., 2012),
drawing on early work on with hybrid GMM-NN
architectures (Bourlard and Morgan, 1993). Both
HMM-GMM and HMM-DNN systems remain dif-
ficult to build, and nearly impossible to efficiently
optimize for downstream SLU tasks. As a result,
SLU researchers typically operate on an n-best list
of possible transcriptions and treat the LVCSR sys-
tem as a black box.

Recently Graves and Jaitly (2014) demonstrated
an approach to LVCSR using a neural network
trained with the connectionist temporal classifica-
tion (CTC) loss function (Graves et al., 2006). Us-
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ing the CTC loss function the authors built a neural
network which directly maps audio input features to
a sequence of characters. By re-ranking word-level
n-best lists generated from an HMM-DNN system
the authors obtained competitive results on the Wall
Street Journal corpus.

Our work builds upon the foundation introduced
by Graves and Jaitly (2014). Rather than reason-
ing at the word level, we train and decode our sys-
tem by reasoning entirely at the character-level. By
reasoning over characters we eliminate the need
for a lexicon, and enable transcribing new words,
fragments, and disfluencies. We train a deep bi-
directional recurrent neural network (DBRNN) to
directly map acoustic input to characters using the
CTC loss function introduced by Graves and Jaitly
(2014). We are able to efficiently and accurately
perform transcription using only our DBRNN and
a character-level language model (CLM), whereas
previous work relied on n-best lists from a baseline
HMM-DNN system. On the challenging Switch-
board telephone conversation transcription task, our
approach achieves a word error rate competitive
with existing baseline HMM-GMM systems. To our
knowledge, this is the first entirely neural-network-
based system to achieve strong speech transcription
results on a conversational speech task.

Section 2 reviews the CTC loss function and de-
scribes the neural network architecture we use. Sec-
tion 3 presents our approach to efficiently perform
first-pass decoding using a neural network for char-
acter probabilities and a character language model.
Section 4 presents experiments on the Switchboard
corpus to compare our approach to existing LVCSR
systems, and evaluates the impact of different lan-
guage models. In Section 5, we offer insight on how
the CTC-trained system performs speech recogni-
tion as compared to a standard HMM-GMM model,
and finally conclude in Section 6.

2 Model

We address the complete LVCSR problem. Our
system trains on utterances which are labeled by
word-level transcriptions and contain no indication
of when words occur within an utterance. Our ap-
proach consists of two neural networks which we
integrate during a beam search decoding procedure.

Our first neural network, a DBRNN, maps acoustic
input features to a probability distribution over char-
acters at each time step. Our second system compo-
nent is a neural network character language model.
Neural network CLMs enable us to leverage high or-
der n-gram contexts without dramatically increas-
ing the number of free parameters in our language
model. To facilitate further work with our approach
we make our source code publicly available. 1

2.1 Connectionist Temporal Classification

We train neural networks using the CTC loss func-
tion to do maximum likelihood training of letter
sequences given acoustic features as input. This
is a direct, discriminative approach to building a
speech recognition system in contrast to the gen-
erative, noisy-channel approach which motivates
HMM-based speech recognition systems. Our ap-
plication of the CTC loss function follows the ap-
proach introduced by Graves and Jaitly (2014), but
we restate the approach here for completeness.

CTC is a generic loss function to train systems
on sequence problems where the alignment between
the input and output sequence are unknown. CTC
accounts for time warping of the output sequence
relative to the input sequence, but does not model
possible re-orderings. Re-ordering is a problem in
machine translation, but is not an issue when work-
ing with speech recognition – our transcripts provide
the exact ordering in which words occur in the input
audio.

Given an input sequence X of length T , CTC as-
sumes the probability of a length T character se-
quence C is given by,

p(C|X) =
T∏
t=1

p(ct|X). (1)

This assumes that character outputs at each timestep
are conditionally independent given the input. The
distribution p(ct|X) is the output of some predictive
model.

CTC assumes our ground truth transcript is a char-
acter sequence W with length τ where τ ≤ T . As
a result, we need a way to construct possibly shorter
output sequences from our length T sequence of

1Available at: deeplearning.stanford.edu/lexfree
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character probabilities. The CTC collapsing func-
tion achieves this by introducing a special blank
symbol, which we denote using “ ”, and collapsing
any repeating characters in the original length T out-
put. This output symbol contains the notion of junk
or other so as to not produce a character in the fi-
nal output hypothesis. Our transcriptsW come from
some set of symbols ζ ′ but we reason over ζ = ζ ′∪ .

We denote the collapsing function by κ(·) which
takes an input string and produces the unique col-
lapsed version of that string. As an example, here
are the set of strings Z of length T = 3 such that
κ(z) = hi, ∀z ∈ Z:

Z = {hhi,hii, hi,h i,hi }.

There are a large number of possible length T
sequences corresponding to a final length τ tran-
script hypothesis. The CTC objective function
LCTC(X,W ) is a likelihood of the correct final tran-
script W which requires integrating over the prob-
abilities of all length T character sequences CW =
{C : κ(C) = W} consistent with W after applying
the collapsing function,

LCTC(X,W ) =
∑
CW

p(C|X)

=
∑
CW

T∏
t=1

p(ct|X).
(2)

Using a dynamic programming approach we can ex-
actly compute this loss function efficiently as well as
its gradient with respect to our probabilities p(ct|X).

2.2 Deep Bi-Directional Recurrent Neural
Networks

Our loss function requires at each time t a probabil-
ity distribution p(c|xt) over characters c given in-
put features xt. We model this distribution using
a DBRNN because it provides an expressive model
which explicitly accounts for the sequential relation-
ships that should exist in our task. Moreover, the
DBRNN is a relatively straightforward neural net-
work architecture to specify, and allows us to learn
parameters from data rather than more explicitly
specifying how to convert audio features into char-
acters. Figure 1 shows a DBRNN with two hidden
layers.

W (1) W (1) W (1)

W (2) W (2) W (2)

W (f) W (f)

W (b) W (b)
W (s) W (s) W (s)

+ + +

x

h(1)

h(f)

h(b)

p(c|x)

t− 1 t t+ 1

Figure 1: Deep bi-directional recurrent neural net-
work to map input audio features X to a distribu-
tion p(c|xt) over output characters at each timestep
t. The network contains two hidden layers with the
second layer having bi-directional temporal recur-
rence.

A DBRNN computes the distribution p(c|xt) us-
ing a series of hidden layers followed by an output
layer. Given an input vector xt the first hidden layer
activations are a vector computed as,

h(1) = σ(W (1)Txt + b(1)), (3)

where the matrix W (1) and vector b(1) are the
weight matrix and bias vector. The function σ(·)
is a point-wise nonlinearity. We use σ(z) =
min(max(z, 0), µ). This is a rectified linear acti-
vation function clipped to a maximum possible ac-
tivation of µ to prevent overflow. Rectified linear
hidden units have been show to work well in gen-
eral for deep neural networks, as well as for acoustic
modeling of speech data (Glorot et al., 2011; Zeiler
et al., 2013; Dahl et al., 2013; Maas et al., 2013)

We select a single hidden layer j of the network
to have temporal connections. Our temporal hidden
layer representation h(j) is the sum of two partial
hidden layer representations,

h
(j)
t = h

(f)
t + h

(b)
t . (4)

The representation h(f) uses a weight matrix W (f)

to propagate information forwards in time. Sim-
ilarly, the representation h(b) propagates informa-
tion backwards in time using a weight matrix W (b).
These partial hidden representations both take input
from the previous hidden layer h(j−1) using a weight
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matrix W (j),

h
(f)
t = σ(W (j)Th

(j−1)
t +W (f)Th

(f)
t−1 + b(j)),

h
(b)
t = σ(W (j)Th

(j−1)
t +W (b)Th

(b)
t+1 + b(j)).

(5)

Note that the recurrent forward and backward hid-
den representations are computed entirely inde-
pendently from each other. As with the other
hidden layers of the network we use σ(z) =
min(max(z, 0), µ).

All hidden layers aside from the first hidden layer
and temporal hidden layer use a standard dense
weight matrix and bias vector,

h(i) = σ(W (i)Th(i−1) + b(i)). (6)

DBRNNs can have an arbitrary number of hidden
layers, but we assume that only one hidden layer
contains temporally recurrent connections.

The model outputs a distribution p(c|xt) over a
set of possible characters ζ using a softmax output
layer. We compute the softmax layer as,

p(c = ck|xt) =
exp(−(W (s)T

k h(:) + b
(s)
k ))∑|ζ|

j=1 exp(−(W (s)T
j h(:) + b

(s)
j ))

,

(7)

where W (s)
k is the k’th column of the output weight

matrix W (s) and b(s)k is a scalar bias term. The vec-
tor h(:) is the hidden layer representation of the final
hidden layer in our DBRNN.

We can directly compute a gradient for all weights
and biases in the DBRNN with respect to the CTC
loss function and apply batch gradient descent.

3 Decoding

Our decoding procedure integrates information from
the DBRNN and language model to form a sin-
gle cohesive estimate of the character sequence in
a given utterance. For an input sequence X of
length T our DBRNN produces a set of probabilities
p(c|xt), t = 1, . . . , T . Again, the character proba-
bilities are a categorical distribution over the symbol
set ζ.

3.1 Decoding Without a Language Model
As a baseline, we use a simple, greedy approach
to decoding the DBRNN outputs (Graves and Jaitly,

2014). The simplest form of decoding does not em-
ploy the language model and instead finds the high-
est probability character transcription given only the
DBRNN outputs. This process selects a transcript
hypothesis W ∗ by making a greedy approximation,

W ∗ = arg max
W

p(W |X) ≈ κ(arg max
C

p(C|X))

= κ(arg max
C

T∏
t=1

p(ct|X)).

(8)

This decoding procedure ignores the issue of many
time-level character sequences mapping to the same
final hypothesis, and instead considers only the most
probable character at each point in time. Because
our model assumes the character labels for each
timestep are conditionally independent, C∗ is sim-
ply the most probable character at each timestep in
our DBRNN output. As a result, this decoding pro-
cedure is very fast to compute, requiring only time
O(T |ζ|).
3.2 Beam Search Decoding

To decode while taking language model probabili-
ties into account, we use a beam search to combine
a character language model and the outputs of our
DBRNN. This search-based decoding method does
not make a greedy approximation and instead as-
signs probability to a final hypothesis by integrat-
ing over all character sequences consistent with the
hypothesis under our collapsing function κ(·). Al-
gorithm 1 outlines our decoding procedure.

We note that our decoding procedure is signifi-
cantly simpler, and in practice faster, than previous
decoding procedures applied to CTC models. This
is due to reasoning at the character level without a
lexicon so as to not introduce difficult multi-level
constraints to obey during the decoding search pro-
cedure. While a softmax over words is typically
the bottleneck in neural network language models,
a softmax over possible characters is comparatively
cheap to compute. Our character language model is
applied at every time step, while word models can
only be applied when we consider adding a space or
by computing the likelihood of a sequence being the
prefix of a word in the lexicon (Graves and Jaitly,
2014). Additionally, our lexicon-free approach re-
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Algorithm 1 Beam Search Decoding: Given the likelihoods from our DBRNN and our character language
model, for each time step t and for each string s in our current previous hypothesis set Zt−1, we consider
extending s with a new character. Blanks and repeat characters with no separating blank are handled sep-
arately. For all other character extensions, we apply our character language model when computing the
probability of s. We initialize Z0 with the empty string ∅. Notation: ζ ′: character set excluding “ ”, s+ c:
concatenation of character c to string s, |s|: length of s, pb(c|x1:t) and pnb(c|x1:t): probability of s ending
and not ending in blank conditioned on input up to time t, ptot(c|x1:t): pb(c|x1:t) + pnb(c|x1:t)

Inputs CTC likelihoods pctc(c|xt), character language model pclm(c|s)
Parameters language model weight α, insertion bonus β, beam width k
Initialize Z0 ← {∅}, pb(∅|x1:0)← 1, pnb(∅|x1:0)← 0
for t = 1, . . . , T do

Zt ← {}
for s in Zt−1 do

pb(s|x1:t)← pctc( |xt)ptot(s|x1:t−1) . Handle blanks
pnb(s|x1:t)← pctc(c|xt)pnb(s|x1:t−1) . Handle repeat character collapsing
Add s to Zt
for c in ζ ′ do

s+ ← s+ c
if c 6= st−1 then

pnb(s+|x1:t)← pctc(c|xt)pclm(c|s)αptot(c|x1:t−1)
else

pnb(s+|x1:t)← pctc(c|xt)pclm(c|s)αpb(c|x1:t−1) . Repeat characters have “ ” between
end if
Add s+ to Zt

end for
end for
Zt ← k most probable s by ptot(s|x1:t)|s|β in Zt . Apply beam

end for
Return arg maxs∈Zt

ptot(s|x1:T )|s|β

moves the difficulties of handling OOV words dur-
ing decoding, which is typically a troublesome issue
in speech recognition systems.

4 Experiments

We perform LVCSR experiments on the 300 hour
Switchboard conversational telephone speech cor-
pus (LDC97S62). Switchboard utterances are taken
from approximately 2,400 conversations among 543
speakers. Each pair of speakers had never met, and
converse no more than once about a given topic cho-
sen randomly from a set of 50 possible topics. Ut-
terances exhibit many rich, complex phenomena that
make spoken language understanding difficult. Ta-
ble 2 shows example transcripts from the corpus.

For evaluation, we report word error rate (WER)

and character error rate (CER) on the HUB5
Eval2000 dataset (LDC2002S09). This test set con-
sists of two subsets, Switchboard and CallHome.
The CallHome subset represents a mismatched test
condition as it was collected from phone conversa-
tions among family and friends rather than strangers
directed to discuss a particular topic. The mismatch
makes the CallHome subset quite difficult overall.
The Switchboard evaluation subset is substantially
easier, and represents a better match of test data to
our training corpus. We report WER and CER on
the test set as a whole, and additionally report WER
for each subset individually.

4.1 Baseline Systems
We build two baseline LVCSR systems to compare
our approach to standard HMM-based approaches.

349



Method CER EV CH SWBD

HMM-GMM 23.0 29.0 36.1 21.7
HMM-DNN 17.6 21.2 27.1 15.1
HMM-SHF NR NR NR 12.4

CTC no LM 27.7 47.1 56.1 38.0
CTC+5-gram 25.7 39.0 47.0 30.8
CTC+7-gram 24.7 35.9 43.8 27.8
CTC+NN-1 24.5 32.3 41.1 23.4
CTC+NN-3 24.0 30.9 39.9 21.8
CTC+RNN 24.9 33.0 41.7 24.2
CTC+RNN-3 24.7 30.8 40.2 21.4

Table 1: Character error rate (CER) and word er-
ror rate results on the Eval2000 test set. We re-
port word error rates on the full test set (EV) which
consists of the Switchboard (SWBD) and CallHome
(CH) subsets. As baseline systems we use an HMM-
GMM system and HMM-DNN system. We evaluate
our DBRNN trained using CTC by decoding with
several character-level language models: 5-gram, 7-
gram, densely connected neural networks with 1 and
3 hidden layers (NN-1, and NN-3), as well as recur-
rent neural networks s with 1 and 3 hidden layers.
We additionally include results from a state-of-the-
art HMM-based system (HMM-DNN-SHF) which
does not report performance on all metrics we eval-
uate (NR).

First, we build an HMM-GMM system using the
Kaldi open-source toolkit2 (Povey et al., 2011). The
baseline recognizer has 8,986 sub-phone states and
200K Gaussians trained using maximum likelihood.
Input features are speaker-adapted MFCCs. Overall,
the baseline GMM system setup largely follows the
existing s5b Kaldi recipe, and we defer to previous
work for details (Vesely et al., 2013).

We additionally built an HMM-DNN system
by training a DNN acoustic model using maxi-
mum likelihood on the alignments produced by our
HMM-GMM system. The DNN consists of five hid-
den layers, each with 2,048 hidden units, for a total
of approximately 36 million (M) free parameters in
the acoustic model.

Both baseline systems use a bigram language

2http://kaldi.sf.net

model built from the 3M words in the Switch-
board transcripts interpolated with a second bi-
gram language model built from 11M words on the
Fisher English Part 1 transcripts (LDC2004T19).
Both LMs are trained using interpolated Kneser-
Ney smoothing. For context we also include WER
results from a state-of-the-art HMM-DNN system
built with quinphone phonetic context and Hessian-
free sequence-discriminative training (Sainath et al.,
2014).

4.2 DBRNN Training

We train a DBRNN using the CTC loss function on
the entire 300hr training corpus. The input features
to the DBRNN at each timestep are MFCCs with
context window of ±10 frames. The DBRNN has
5 hidden layers with the third containing recurrent
connections. All layers have 1824 hidden units, giv-
ing about 20M trainable parameters. In preliminary
experiments we found that choosing the middle hid-
den layer to have recurrent connections led to the
best results.

The output symbol set ζ consists of 33 characters
including the special blank character. Note that be-
cause speech recognition transcriptions do not con-
tain proper casing or punctuation, we exclude capi-
tal letters and punctuation marks with the exception
of “-”, which denotes a partial word fragment, and
“’”, as used in contractions such as “can’t.”

We train the DBRNN from random initial pa-
rameters using the gradient-based Nesterov’s accel-
erated gradient (NAG) algorithm as this technique
is sometimes beneficial as compared with standard
stochastic gradient descent for deep recurrent neural
network training (Sutskever et al., 2013). The NAG
algorithm uses a step size of 10−5 and a momentum
of 0.95. After each epoch we divide the learning rate
by 1.3. Training for 10 epochs on a single GTX 570
GPU takes approximately one week.

4.3 Character Language Model Training

The Switchboard corpus transcripts alone are too
small to build CLMs which accurately model gen-
eral orthography in English. To learn how to spell
words more generally we train our CLMs using a
corpus of 31 billion words gathered from the web
(Heafield et al., 2013). Our language models use
sentence start and end tokens, <s> and </s>, as
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well as a <null> token for cases when our context
window extends past the start of a sentence.

We build 5-gram and 7-gram CLMs with modified
Kneser-Ney smoothing using the KenLM toolkit
(Heafield et al., 2013). Building traditional n-gram
CLMs is for n > 7 becomes increasingly difficult as
the model free parameters and memory footprint be-
come unwieldy. Our 7-gram CLM is already 21GB;
we were not able to build higher order n-gram mod-
els to compare against our neural network CLMs.

Following work illustrating the effectiveness of
neural network CLMs (Sutskever et al., 2011) and
word-level LMs for speech recognition (Mikolov et
al., 2010), we train and evaluate two variants of neu-
ral network CLMs: standard feedfoward deep neu-
ral networks (DNNs) and a recurrent neural network
(RNN). The RNN CLM takes one character at a time
as input, while the non-recurrent CLM networks use
a context window of 19 characters. All neural net-
work CLMs use the rectified linear activation func-
tion, and the layer sizes are selected such that each
has about 5M parameters (20MB).

The DNN models are trained using standard back-
propagation using Nesterov’s accelerated gradient
with a learning rate of 0.01 and momentum of 0.95
and a batch size of 512. The RNN is trained using
backpropagation through time with a learning rate of
0.001 and batches of 128 utterances. For both model
types we halve the learning rate after each epoch.
The DNN models were trained for 10 epochs, and
the RNN models for 5 epochs.

All neural network CLMs were trained using a
combination of the Switchboard and Fisher train-
ing transcripts which in total contain approximately
23M words. We also performed experiments with
CLMs trained from a large corpus of web text,
but found these CLMs to perform no better than
transcript-derived CLMs for our task.

4.4 Results
After training the DBRNN and CLMs we run de-
coding on the Eval2000 test set to obtain CER and
WER results. For all experiments using a CLM
we use our beam search decoding algorithm with
α = 1.25, β = 1.5 and a beam width of 100. We
found that larger beam widths did not significantly
improve performance. Table 1 shows results for the
DBRNN as well as baseline systems.

The DBRNN performs best with the 3 hidden
layer DNN CLM. This DBRNN+NN-3 attains both
CER and WER performance comparable to the
HMM-GMM baseline system, albeit substantially
below the HMM-DNN system. Neural networks
provide a clear gain as compared to standard n-gram
models when used for DBRNN decoding, although
the RNN CLM does not produce any gain over the
best DNN CLM.

Without a language model the greedy DBRNN
decoding procedure loses relatively little in terms of
CER as compared with the DBRNN+NN-3 model.
However, this 3% difference in CER translates to a
16% gap in WER on the full Eval2000 test set. Gen-
erally, we observe that small CER differences trans-
late to large WER differences. In terms of character-
level performance it appears as if the DBRNN
alone performs well using only acoustic input data.
Adding a CLM yields only a small CER improve-
ment, but guides proper spelling of words to produce
a large reduction in WER.

5 Analysis

To better see how the DBRNN performs transcrip-
tion we show the output probabilities p(c|x) for an
example utterance in Figure 2. The model tends to
output mostly blank characters and only spike long
enough for a character to be the most likely sym-
bol for a few frames at a time. The dominance of
the blank class is not forced, but rather learned by
the DBRNN during training. We hypothesize that
this spiking behavior results in more stable results
as the DBRNN only produces a character when its
confidence of seeing that character rises above a cer-
tain threshold. Note that this a dramatic contrast to
HMM-based LVCSR systems, which, due to the na-
ture of generative models, attempt to explain almost
all timesteps as belonging to a phonetic substate.

Next, we qualitatively compare the DBRNN and
HMM-GMM system outputs to better understand
how the DBRNN approach might interact with SLU
systems. This comparison is especially interesting
because our best DBRNN system and the HMM-
GMM system have comparable WERs, removing
the confound of overall quality when comparing hy-
potheses. Table 2 shows example test set utterances
along with transcription hypotheses from the HMM-
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# Method Transcription

(1)
Truth yeah i went into the i do not know what you think of fidelity but
HMM-GMM yeah when the i don’t know what you think of fidel it even them
CTC+CLM yeah i went to i don’t know what you think of fidelity but um

(2)

Truth no no speaking of weather do you carry a altimeter slash barometer
HMM-GMM no i’m not all being the weather do you uh carry a uh helped emitters last

brahms her
CTC+CLM no no beating of whether do you uh carry a uh a time or less barometer

(3)
Truth i would ima- well yeah it is i know you are able to stay home with them
HMM-GMM i would amount well yeah it is i know um you’re able to stay home with them
CTC+CLM i would ima- well yeah it is i know uh you’re able to stay home with them

Table 2: Example test set utterances with a ground truth transcription and hypotheses from our method
(CTC+CLM) and a baseline HMM-GMM system of comparable overall WER. The words fidelity and
barometer are not in the lexicon of the HMM-GMM system.

0 10 20 30
time (t)

0.5

1.0

p(
c|x

t)

s:

κ(s):

_____o__hh__________ ____y_eahh___

oh yeah

p( |xt)
p(¬ |xt)

Figure 2: DBRNN character probabilities over time
for a single utterance along with the per-frame most
likely character string s and the collapsed output
κ(s). Due to space constraints we only show a dis-
tinction in line type between the blank symbol and
non-blank symbols.

GMM and DBRNN+NN-3 systems.
The DBRNN sometimes correctly transcribes

OOV words with respect to our audio training cor-
pus. We find that OOVs tend to trigger clusters of
errors in the HMM-GMM system, an observation
that has been systematically explored in previous
work (Goldwater et al., 2010). As shown in ex-
ample utterance (3), HMM-GMM errors can intro-
duce word substitution errors which may alter mean-
ing whereas the DBRNN system outputs word frag-
ments or non-words which are phonetically similar
and may be useful input features for SLU systems.
Unfortunately the Eval2000 test set does not offer a

rich set of utterances containing OOVs or fragments
to perform a deeper analysis. The HMM-GMM and
best DBRNN system achieve identical WERs on the
subset of test utterances containing OOVs and the
subset of test utterances containing fragments.

Finally, we quantitatively compare how character
probabilities from the DBRNN align with phonetic
segments from the HMM-GMM system. We gener-
ate HMM-GMM forced alignments on a large sam-
ple of the training set, and separate utterances into
monophone segments. For each monophone, we
compute the average character probabilities from the
DBRNN by aligning the beginning of each mono-
phone segment, treating it as time 0. We measure
time using feature frames rather than seconds. Fig-
ure 3 shows character probabilities over time for the
phones k, sh, w, and uw.

Although the CTC model does not explicitly com-
pute a forced alignment as part of training, we
see significant rises in character probabilities corre-
sponding to particular phones during HMM-GMM-
aligned monophone segments. This indicates that
the CTC model automatically learns a reasonable
alignment of characters to the audio. Generally, the
CTC model tends to produce character spikes to-
wards the beginning of monophone segments. This
is especially evident in plosive consonants such as
k and t. For liquids and glides (r, l, w, y), the CTC
model does not produce characters until later in the
monophone segment. For vowels the CTC character
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Figure 3: Character probabilities from the CTC-trained neural network averaged over monophone segments
created by a forced alignment of the HMM-GMM system. Time is measured in frames, with 0 indicating the
start of the monophone segment. The vertical dotted line indicates the average duration of the monophone
segment. We show only characters with non-trivial probability for each phone while excluding the blank
and space symbols.

probabilities generally rise slightly later in the phone
segment as compared to consonants. This may occur
to avoid the large contextual variations in vowel pro-
nunciations at phone boundaries. For certain conso-
nants we observe CTC probability spikes before the
monophone segment begins, as is the case for sh.
The probabilities for sh additionally exhibit multiple
modes, suggesting that CTC may learn different be-
haviors for the two common spellings of the sibilant
sh: the letter sequence “sh” and the letter sequence
“ti”.

6 Conclusion

We presented an LVCSR system consisting of two
neural networks integrated via beam search decod-
ing that matches the performance of an HMM-GMM
system on the challenging Switchboard corpus. We
built on the foundation of Graves and Jaitly (2014)
to vastly reduce the overall complexity required for
LVCSR systems. Our method yields a complete
first-pass LVCSR system with about 1,000 lines of
code — roughly an order of magnitude less than
high performance HMM-GMM systems. Operat-
ing entirely at the character level yields a system
which does not require assumptions about a lexicon

or pronunciation dictionary, instead learning orthog-
raphy and phonics directly from data. We hope the
simplicity of our approach will facilitate future re-
search in improving LVCSR with CTC-based sys-
tems and jointly training LVCSR systems for SLU
tasks. DNNs have already shown great results as
acoustic models in HMM-DNN systems. We free
the neural network from its complex HMM infras-
tructure, which we view as the first step towards
the next wave of advances in speech recognition and
language understanding.
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