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Outline

e ASR discussion thus far

e Connectionist temporal classification (CTC)
e Lexicon-free CTC

e Scaling up end-to-end neural approaches
e Alternative end-to-end approaches

e HW3 discussion
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Noisy channel model

likelihood prior
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W =argmax P(O IW)P(W)
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The noisy channel model

lgnoring the denominator leaves us with two
factors: P(Source) and P(Signal | Source)

“(,/ﬂ?EE;;;;;HnEI>>

source sentence

If music be
the food of love...

decoder
Every happy family S 44

In a hole in the ground

guess at source:

If music be

.i'f music be the food of love,/} N
the food of love... - i

S
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Acoustic Modeling with GMMSs

Transcription: Samson

Pronunciation: S—-AE-M-S-AH-N

Sub-phones : 942 — 6 — 37 — 8006 — 4422 ...

Hidden Markov

Model (HMM):

Acoustic Model: GMM models:
P(x]s)

X: input features
s: HMM state

Audio Input:

[ Features ] [ Features ] [ Features ]
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DNN Hybrid Acoustic Models

Transcription: Samson

Pronunciation: S-AE-M-S-AH-N
Sub-phones : 942 — 6 — 37 — 8006 — 4422 ...
Hidden Markov

Model (HMM):

Use a DNN to approximate:

P(s[x)
Acoustic Model:
Apply Bayes’ Rule:
Q & ﬁ P(x|s) = P(s[x) * P(x) / P(s)
DNN * Constant / State prior
Audio Input: l Features (x,) I l Features (x,) I l Features (x;) I
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(Maas, Q1, Xie, Hannun, Lengerich, Jurafsky, & Ng. 2017)

Framework + |solated Training
Limitations
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Recurrent DNN Hybrid Acoustic Models

Transcription: Samson
Pronunciation: S-AE-M-S-AH-N
Sub-phones : 942 — 6 — 37 — 8006 — 4422 ...

Hidden Markov
Model (HMM):

Acoustic Model: [%ﬁ[#]
| —  —
el

Audio Input: Features (x,) Features (x,) Features (x;)
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Deep Recurrent Network

[ Ql ] [ gQ ] Output Layer
7?2 =V (z5) + ¢

T( V,c) T(V, c)
Hidden Layer

[ ) (1) ] [ W) (z2) ] O (25) = o(WORW (1) + b®)

T(W(2)7 b(2)) T(W(Q)’ b(2))

(U) H;
(1) (1) idden Layer
[ h' (xq) |—>| h' (x2) ]h(1)($2) = (W g + 50 1+ UAD (2))

T(W(l)’ b)) T(W(l)’ (1))

[ v — [o,asl,aﬂ] [x _ [azl,aﬂ,xﬂ] Input
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HMM-Free Recognition

Transcription: Samson
Pronunciation:
Sub-phones :

Hidden Markov
Model (HMM):

Acoustic Model: [% [% [%

Audio Input: l Features (x,) I l Features (x,) I l Features (x;) I

(Graves & Jaitly. 2014) Stanford CS224S Spring 2017



HMM-Free Recognition

Transcription: Samson
Characters: SAMSON
Collapsing SS AAMS O NNNN
function:
S S _
P(a|x,) P(a|x,) P(a|x;) Use a DNN to approximate:
Acoustic Model: [ 1 ] [ : ] [ : ] P(a|x)
l I l I l I The distribution over characters
Audio Input: A A A

(Graves & Jaitly. 2014) Stanford CS224S Spring 2017



Example Results (WSJ)

YET A REHBILITATION CRU IS ONHAND IN THE BUILDING LOOGGING BRICKS PLASTER
AND BLUEPRINS FOUR FORTY TWO NEW BETIN EPARTMENTS

YET A REHABILITATION CREW IS ON HAND IN THE BUILDING LUGGING BRICKS PLASTER
AND BLUEPRINTS FOR FORTY TWO NEW BEDROOM APARTMENTS

THIS PARCLE GUNA COME BACK ON THIS ILAND SOM DAY SOO
THE SPARKLE GONNA COME BACK ON THIS ISLAND SOMEDAY SOON

TRADE REPRESENTIGD JUIDER WARANTS THAT THE U S WONT BACKCOFF ITS PUSH
FOR TRADE BARIOR REDUCTIONS

TRADE REPRESENTATIVE YEUTTER WARNS THAT THE U S WONT BACK OFF ITS PUSH
FOR TRADE BARRIER REDUCTIONS

TREASURY SECRETARY BAGER AT ROHIE WOS IN AUGGRAL PRESSED FOUR ARISE IN
THE VALUE OF KOREAS CURRENCY

TREASURY SECRETARY BAKER AT ROH TAE WOOS INAUGURAL PRESSED FOR A RISE IN
THE VALUE OF KOREAS CURRENCY

Stanford CS224S Spring 2017



Earlier work on CTC with phonemes

: Waveform
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Table 1. Label Error Rate (LER) on TIMIT. CTC
and hybrid results are means over 5 runs, + standard error.
All differences were significant (p < 0.01), except between
weighted error BLSTM/HMM and CTC (best path).

System LER
Context-independent HMM 38.85 %
Context-dependent HMM 35.21 %
BLSTM/HMM 33.84 + 0.06 %
Weighted error BLSTM/HMM  31.57 £ 0.06 %
CTC (best path) 31.47 + 0.21%
CTC (prefix search) 30.51 + 0.19%

(Graves, Fernandez, Gomez, & Schmidhuber. 2006) i C52248 Spring 2017



Decoding with a Language Model

Lexicon

Language
Model

Character
Probabilities

[a, ..., zebra]

p(‘6yeah9, 660h97)

A A A

(Hannun, Maas, Jurafsky, & Ng. 2014)
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Character Error Rate

None Lexicon Bigram

Word Error Rate

None Lexicon Bigram
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Loss functions and architecture

e What function to fit * How do we approximate

e Loss function that function

e HMM-DNN uses e Neural network
independent per-frame architecture
classification with force e HMM-DNN typically fine
alignment hard labels with just DNN

e CTC independent per- e CTC needs recurrent NN

frame but cleverly
allows for multiple
possible labelings

Stanford CS224S Spring 2017



CTC loss during training

(Graves, Fernandez, Gomez, & Schmidhuber. 2006)

output error

Figure 4. Evolution of the CTC Error Signal During
Training. The left column shows the output activations
for the same sequence at various stages of training (the
dashed line is the ‘blank’ unit); the right column shows
the corresponding error signals. Errors above the horizon-
tal axis act to increase the corresponding output activation
and those below act to decrease it. (a) Initially the network
has small random weights, and the error is determined by
the target sequence only. (b) The network begins to make
predictions and the error localises around them. (c) The
network strongly predicts the correct labelling and the er-
ror virtually disappears.

Stanford CS224S Spring 2017



Recurrence Matters!

S J—

S
[ Pax) | | Pax | [ Palxy | _-

DNN 22

!
!

(Hannun, Maas, Jurafsky, & Ng. 2014) Stanford CS224S Spring 2017



CTC Loss Function

e Maximum log likelihood training of transcript

* Intuition: Alignments are unknown so integrate over
all possible time-character alignments

Loro(X, W) = Z p(C|X)
C: k(C)=W

= Z Hp(ct]X).

C: k(C)=W t=1

e Example: W =“hi”, T=3
possible C such that K(C) = W:
hhi,hii, hi,h i,hi

(Graves & Jaitly. 2014) Stanford CS224S Spring 2017



CTC Objective Function

Labels at each time index are conditionally independent
(like HMMs)

-
Pr(alz) = H Pr(a;,t|x)
t=1

Sum over all time-level [abelings consistent with the

output label. Pr(y|z) = Z Pr(ala)
Output label: AB acB—1(y)

Time-level labelings: AB, AB,A B,.. A B_

Final objective maximizes probability of true labels:

CTC(x) = —log Pr(y~|x)

(Graves & Jaitly, ICML 2014) Stanford CS224S Spring 2017



Collapsing Example

Per-frame argmax:

Yy ee tt a
I e hh b 1 11 tt aa tt 110 n_
cc Ir_u 11 ss
0 nn hhh a nnddd 1 n
__thh e bb_uuii 1111dd i1 nng
l o og g i nng
b i ck s p 1l a sstt eerr__
a nnd b 1l uu ee pp r i nnss_
f oou ITr f oo rrr tty
t WwWWw 00 nn__ ew
b e t 1 n
€ pp aa_1r tt mm ee  nnntss
After collapsing:

yet a rehbilitation cru is onhand in the building loogging bricks plaster and blueprins four forty two new betin epartments

Reference:

yet a rehabilitation crew is on hand in the building lugging bricks plaster and blueprints for forty two new bedroom
apartments

(Hannun, Maas, Jurafsky, & Ng. 2014) Stanford CS224S Spring 2017



Rethinking Decoding

Out of Vocabulary Words

syriza

schmidhuber

Character
Probabilities

o0 h yeaah

i, S S 3
u_

SR

-

(Maas*, Xie*, Jurafsky, & Ng. 2015)

abo--

bae

sof--

Character
Language
Model

p(th|o,h, ye.a,)

Character

Probabilities _ oo h yeaah

A A A
A

31

s
-
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Beam Search Decoding

Inputs CTC likelihoods pc(c|zt), character language model pgim (c|s)
Parameters language model weight «, insertion bonus 3, beam width k

Initialize 7y <+ {@},pb(®|x1;0) — 1,pnb(®|w1:0) <0
fort=1,...,T do
Zy < {}
for sin Z;_; do
Po(5]71:2) 4 Pese () proe(5z1:0-1)
pnb(3|x1:t) <~ pctc(c|xt)pnb(3|$1:t—l)
Add s to Z;
for cin (' do
sT ¢« s+c
if ¢ # s;_1 then
pnb(3+|$1:t) <~ pctc(C|xt)pclm(c|3)aptot(c|$1:t~1)
else
pnb(3+|x1:t) — pctc(C|$t)pclm(6’S)apb(clwl:t—l)
end if
Add S+ to Zt
end for
end for
Z; < k most probable s by pi(s|z1.¢)|s|? in Z;
end for
Return arg max,c ;. piot(s|z1.7)|5|°

> Handle blanks
> Handle repeat character collapsing

> Repeat characters have “_” between

> Apply beam

Stanford CS224S Spring 2017



Lexicon-Free & HMM-Free on Switchboard

40

35

30

25

20
15
O 7 I I I I

HMM-GMM CTC No LM CTC + 7-gram CTC + NN LM HMM-DNN

(Oa )
|

(Maas*, Xie*, Jurafsky, & Ng. 2015) Stanford CS224S Spring 2017



Example Results (Switchboard) ~19%
CER

i i don'tknow i don't know what the rain force have to do with it but you know their
chop a those down af the tr minusrat everyday

i- i don't kn- i don't know what the rain forests have to do with it but you know they're
chopping those down at a tremendous rate everyday

come home and get back in to regular cloos aga
come home and get back into regular clothes again

i guess down't here u we just recently move to texas so my wor op has change quite a
bit muh we ook from colorado were and i have a cloveful of sweatterso tuth

i guess down here uh we just recently moved to texas so my wardrobe has changed
quite a bit um we moved from colorado where and i have a closet full of sweaters that

i don't know whether state lit state hood whold itprove there a conomy i don'ti don't
know that to that the actove being a state

i don't know whether state woul- statehood would improve their economy i don't i
don't know that the ve- the act of being a state

(Maas*, Xie*, Jurafsky, & Ng. 2015) Stanford CS224S Spring 2017



Comparing CLMs
Switchboard Word Error Rate
40

35 -

30 A

20 -

15 -

10 -

No LM 5-gram 7-gram NN 1H NN 3H RNN 1H RNN 3H
All NN models have 5M total parameters
(Maas*, Xie*, Jurafsky, & Ng. 2015) Stanford CS224S Spring 2017



Transcribing Out of Vocabulary Words

Truth: yeah 1 went into the 1 do not know what you think of fidelity but
HMM-GMM: yeah when the 1 don’t know what you think of fidel it even them
CTC-CLM: yeah 1 went to 1 don’t know what you think of fidelity but um

Truth: no no speaking of weather do you carry a altimeter slash barometer
HMM-GMM: no 1’m not all being the weather do you uh carry a uh helped emitters last brahms her
CTC-CLM: no no beating of whether do you uh carry a uh a time or less barometer

Truth: 1 would ima- well yeah it is 1 know you are able to stay home with them
HMM-GMM: i would amount well yeah it is 1 know um you’re able to stay home with them
CTC-CLM: i would ima- well yeah it is i know uh you’re able to stay home with them

(Maas*, Xie*, Jurafsky, & Ng. 2015) Stanford CS224S Spring 2017



Comparing Alignments

sl ehl ¥l MMJQ iy
dcl

seventy|

HMM-GMM phone probabilities

(HMM slide from Dan Ellis)

time ()

0 10
1.0 —
< 05f A /\
S | gy
— P(o-fe)
S A
S _____ o__hh__________ ____
k(s): oh yeah

CTC character probabilities

Stanford CS224S Spring 2017



Learning Phonemes and Timing

e Take all phone segments from
HMM-GMM alignments (k)

e Align all segments to start at
the same time =0

e Compute the average CTC
character probabilities during
the segment (c, e, k)

* Vertical line shows median
end time of phone segment
from HMM-GMM alignments

0.25 -

0.20 |-

0.10

005+
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Learning Phonemes and Timing

0.25 - . 0.25 - .
ko sh 5 .
0.20 | : — 0.20 | ; — 1
. i — h
0.15 0.15 | ;
- - N ' - = S
0.10 0.10F /1 : — =t
A ' )
) s
0.05 0.05F 4 - :
~ .
1 ] 1 N = Z L : ]
-5 20 25 -5 0 10 15 20 25
0.25 0.25 -
uUw
0.20 T 0.20 T
— (8]
0.15 0.15
- = 11
0.10 0.10 - -y
0.05 0.05
. | 1 | 1 |
-5 20 25 -5 10 15 20 25

(Maas*, Xie*, Jurafsky, & Ng. 2015)
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Scaling end to end models: Baidu
deep speech

Dataset Type Hours  Speakers
WSJ read 80 280
Switchboard conversational 300 4000
Fisher conversational 2000 23000
Baidu read 5000 9600

Table 2: A summary of the datasets used to train Deep Speech. The Wall Street Journal, Switchboard
and Fisher [3] corpora are all published by the Linguistic Data Consortium.

Model SWB CH Full
Vesely et al. (GMM-HMM BMMI) [44] 18.6 33.0 258
Vesely et al. (DNN-HMM sMBR) [44] 126 24.1 184
Maas et al. (DNN-HMM SWB) [28] 146 263 20.5
Maas et al. (DNN-HMM FSH) [28] 16.0 23.7 199
Seide et al. (CD-DNN) [39] 16.1 n/a n/a
Kingsbury et al. (DNN-HMM sMBR HF) [22] 133 n/a n/a
Sainath et al. (CNN-HMM) [36] 115 n/a n/a
Soltau et al. (MLP/CNN+I-Vector) [40] 10.4 n/a n/a
Deep Speech SWB 200 31.8 259
Deep Speech SWB + FSH 126 193 16.0

Table 3: Published error rates (%2WER) on Switchboard dataset splits. The columns labeled “SWB”
and “CH” are respectively the easy and hard subsets of Hub5’00.

(Hannun et al. 2014) Stanford CS224S Spring 2017



Deep Speech — Deep RNN

( CTC )
¥ Fully
[O 0000009 O]I Connected
XX XxXxxxxXIos
oxrxxxxxrxrxn
(. A AN NN .J Recurrent
@eeeee000)| .n
Batch (‘ eo0oo0o0O0O .J (Bidirectional)
Normalization
oxxrxxxrxxrxxrxo
XXX XYxXxon,
@0000000)}
1Dor2D
(@0 00000 0| Invarant
Convolution
00000000
[ Spectrogram J

Slides from Awni Hannun Stanrora Ud224S Spring 2017



Deep Speech — Batch Norm for RNNS

[ I I I Normalize ]

[ I Normalize ]

Slides from Awni Hannun Stanford CS224S Spring 2017



Deep Speech — Batch Norm for RNNS

60 5-1 BN
5-1 No BN

90 — 9.7 BN
9-7 No BN

510 100 150 200 250 300
Iteration (x103)

Stanford CS224S Spring 2017

Slides from Awni Hannun



Deep Speech - Hours of speech data

Language Hours
English 12,000
Mandarin 10,000

Where does the data come from?
@ Public benchmarks (English)

@ Internal manually labelled data (English and Mandarin)

@ Captioned videos (English and Mandarin)

Slides from Awni Hannun Stanford CS224S Spring 2017



Deep Speech - Captioned Video Data Pipeline

1. Download publicly available video + captions.
1. Align caption to video with CTC Model
1. Segment at regions of silence

1. Use simple classifier to throw out very noisy
samples.

Slides from Awni Hannun Stanford CS224S Spring 2017



Deep Speech - Captioned Video Data Pipeline

Align with a model trained with CTC?

Z Hpctc(gt‘x; 9)

¢eAlign(x,y) t

l

T
arg max Hpctc(ﬁt\a:;ﬁ)
LeAlign(z,y) 4

Slides from Awni Hannun Stanford CS224S Spring 2017



Deep Speech - Even more data!

Augmentation: noise synthesis, reverb, time-stretching, pitch-shifting,...

Speech

+

Noisy
Speech

Slides from Awni Hannun Stanford CS224S Spring 2017



Deep Speech — Data Parallel GPU Scaling

[ Model 2

Share weight
updates each
iteration

kModel 4

Slides from Awni Hannun Stanford CS224S Spring 2017



Deep Speech — Data Parallel GPU Scaling

Custom Ring Reduce avoids extraneous copies to CPU memory.

# GPUs | OpenMPIAll-reduce | Custom All-reduce Factor Speedup
(s)* (s)*

4 55359 2587 21.4

8 48881 2470 19.8

16 21562 1393 15.5

*Measures time spent in all-reduce for a single epoch.

Slides from Awni Hannun

Stanford CS224S Spring 2017



Deep Speech — Data Parallel GPU Scaling

219

018 —  5-3(2560)
9-7 (1760)

217

Time (seconds)
(")}
=

Slides from Awni Hannun Stanford CS224S Spring 2017



Deep Speech — Some results

Architecture English (WER) Mandarin (WER)
5-layer 1-RNN 13.55 15.41
5-layer 3-RNN 11.61 11.85
5-layer 3-RNN + BatchNorm 10.56 9.39
9-layer 7-RNN + BatchNorm + 9.52 7.93
Frequency Convolution

Slides from Awni Hannun Stanford CS224S Spring 2017



Deep Speech — Deployment

@ Bi-directional models give almost 10% relative boost ...
but we can’t deploy them.

@ ASR latencies for voice search <50ms

@® For 3 second audio would need to decode 60x faster than
realtime!

Slides from Awni Hannun Stanford CS224S Spring 2017



Deep Speech — Lookahead convolution

ht — ij ® Xt+5—1

7=1
Slides from Awni Hannun Stanford CS224S Spring 2017



Deep Speech — Lookahead convolution

For a lookahead of 20 time-steps (about 800ms 1n the

future)
Model English (WER) Chinese (WER)
Forward only 18.8 15.7
Forward + Lookahead (+50k params) 16.8 13.5
Bidirectional (+12M params) 15.4 12.8

Slides from Awni Hannun

Stanford CS224S Spring 2017



Listen, Attend, and Spell

Speller

U2 Us Y {eos) Grapheme characters y; are
modelled by the
CharacterDistribution

AttentionContext creates
context vector ¢; from h
and S

Long input sequence x is encoded with the pyramidal
h=(h.....hy) BLSTM Listen into shorter sequence h

Listener

Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input
sequence x into high level features h, the speller is an attention-based decoder generating the y characters
from h.

(Chan, Jaitly, Le, & Vinyals. 2015) Stanford CS224S Spring 2017



Listen, Attend, and Spell

Alignment between the Characters and Audio

0 |us|
u i
1 m
7} d |
O <space>
) a
S <space> I
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> 0 O
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d )
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u O
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<space> I
C
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u O
c =i
K |
</S> .
Time

(Chan, Jaitly, Le, & Vinyals. 2015) Stanford CS224S Spring 2017



Listen, Attend, and Spell

Table 1: WER comparison on the clean and noisy Google voice search task. The CLDNN-HMM system is
the state-of-the-art system, the Listen, Attend and Spell (LAS) models are decoded with a beam size of 32.
Language Model (LM) rescoring was applied to our beams, and a sampling trick was applied to bridge the gap
between training and inference.

Model Clean WER | Noisy WER
CLDNN-HMM [20] 8.0 8.9

LAS 16.2 19.0

LAS + LM Rescoring 12.6 14.7

LAS + Sampling 14.1 16.5

LAS + Sampling + LM Rescoring | 10.3 12.0

(Chan, Jaitly, Le, & Vinyals. 2015) Stanford CS224S Spring 2017



Attention-based sequence generation

e Maximum likelihood conditional language model
given the aud p(y1) Timp P(welyr, - - - Y1)

LIELATEREA

Fig. 3. Schematic representation of the Attention-based Re-
current Sequence Generator. At each time step ¢, an MLF
combines the hidden state s;_; with all the input vectors h;
to compute the attention weights ay;. Subsequently, the new
hidden state s, and prediction for output label y; can be com-
puted.

(Bahdanau et al. 2016) Stanford CS224S Spring 2017



