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Abstract

An essential component of soil mapping is classification, a process of assigning spatial soil entities to predefined categories
(classes). However, by their nature soils exist as a continuum both in the spatial and attribute domains and often cannot be fitted
into discrete categories without introducing errors or at least over-simplification. One approach to mitigate this problem in digital
soil mapping is the combination of fuzzy logic-based class assignment with a raster GIS representation model which allows the
continuous spatial variation of soils to be expressed at much greater detail than has been achieved in conventional (analog) soil
survey. However, applications of fuzzy soil mapping face two significant challenges: defining the central concept of a soil category
and determining the degree of membership to the central concept. Prototype category theory is presented here as a potential
solution to these difficulties. Emerging from ideas of family resemblance, centrality and membership gradience, and fuzzy
boundaries (fuzzy set theory), prototype category theory stresses the fact that category membership is not homogenous and that
some members are better representatives of a category than others. A prototype can be viewed as a representation of the category,
that 1) reflects the central tendency of the instances' properties or patterns; 2) consequently is more similar to some category
members than others; and 3) is itself realizable but is not necessarily an instance. Based on this notion, we developed a prototype-
based approach to acquire and represent knowledge on soil–landscape relationships and apply the knowledge in digital soil
mapping under fuzzy logic. The prototype-based approach was applied in a case study to map soils in central Wisconsin, USA. Our
approach created maps that were more accurate in terms of both soil series prediction and soil texture estimation than either the
traditional soil survey or a case-based reasoning approach.
© 2006 Published by Elsevier B.V.
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1. Introduction

In traditional soil mapping it is long-standing conven-
tion to classify soils and depict soil classes as discrete
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polygons on an ‘area-class’ map (Mark and Csillag,
1989). However, soils are known to exist more or less as a
continuum in both geographic space and attribute space
(Burrough, 1996; Zhu, 1997a) as one soil type blends into
another. Fitting this continuous spatial character of soils
into discrete soil categories with full memberships over-
generalizes the inherent complexity of soil variation,
which in turn degrades the accuracy of soil spatial infor-
mation products. In addition to the over-generalization of
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soil variations, manual production in traditional soil
mapping also faces other limitations, primarily low speed
and high cost of production (Zhu et al., 2001).

In order to overcome these limitations, many research-
ers started to explore the use of knowledge-based tech-
niques and fuzzy logic concepts to improve soil mapping
process and its products (see McBratney et al., 2003 for a
review). Among these endeavors, the SoLIM approach
(Zhu and Band, 1994; Zhu et al., 1996, 1997; Zhu, 1997a,
b; Zhu et al., 2001) is a knowledge-based soil mapping
system developed for mass production of soil survey.
SoLIM is an automated soil inference system that com-
bines fuzzy logic-based class assignment with a raster GIS
representation model, which allows the continuous spatial
variation of soils to be expressed at much greater detail so
that the class transitions and within-class variations can be
represented. SoLIMuses an-dimensional similarity vector
to depict soil properties at each pixel location (i, j) (Zhu,
1997a): Sij= (Sij

1, Sij
2,…, Sij

k, …,Sij
n), where Sij

k represents the
similarity value or fuzzymembership of the soil at location
(i, j) to the prescribed soil class k, and n is the total number
of these prescribed classes. The soil similarity vectors (S)
are inferred under fuzzy logic based on the same concept
S= f (E) as in traditional soil survey, where the essential
formative environment data E can be derived using GIS
techniques (Zhu et al., 1996;McSweeney et al., 1994), and
the relationship between soil and relevant environmental
variables (the soil-landscape model) f is obtained through
knowledge acquisition. f should reflect both the central
concepts of soil classes and the transitions between central
concepts.

Knowledge-based fuzzy digital soil mapping ap-
proaches currently face two major challenges in de-
fining f: the representation of the central concept of a
soil category and how membership to this central con-
cept is modeled. These difficulties are largely due to two
factors. First, knowledge acquisition from human ex-
perts has long been noted to be the bottleneck for the
development of knowledge-based systems (Molokova,
1993; Weibel et al., 1995), especially in the case of
knowledge-based soil mapping, where knowledge of the
soil–landscape model largely exists as “tacit knowl-
edge” (Hudson, 1992). Second, it is desirable that the
extracted knowledge be represented in a form that is
computable as well as readily communicable with soil
scientists so that other soil scientists can validate and
update this knowledge base. This makes it necessary for
the knowledge representation to approximate the mental
representation of soil scientists' understanding of the
soil classes and the knowledge acquisition to be based
on the cognitive process suited soil scientists' under-
standing of soil variation.
Early implementations of SoLIM, however, did not
take into consideration the cognitive aspects of knowl-
edge formulation and representation for soil classifica-
tion. In previous SoLIM applications, soil scientists were
required to provide either the exact forms of fuzzy
membership functions (Zhu, 1999; Zhu et al., 2001) or a
large set of typical cases for known soil types in the study
area (Shi et al., 2004). Soil inference was then conducted
through fuzzy inference or case-based reasoning. Lack-
ing a cognitive basis, these previous approaches place
unreasonable demands on soil scientists during knowl-
edge acquisition by requiring that they reformulate their
mental knowledge into the desired form. Difficulty may
also arise when the acquired knowledge needs to be
interpreted or updated. This paper presents an approach
that addresses this issue by employing the principles of
cognitive theory in both the knowledge representation
and the associated knowledge acquisition process in an
effort to provide guidance to practitioners of digital soil
mapping using approaches similar to SoLIM.

It has been contended that better understanding of how
human beings acquire, organize, and process domain
knowledge eases the difficulties in acquiring knowledge
from domain experts in the development of knowledge-
based systems (McCracken and Cate, 1986; Ford et al.,
1991; Zhu, 1999; Özesmi and Özesmi, 2004). Especially
for soil classification, it has long been suggested that it
would be possible and desirable to connect the design of
knowledge-based classification systems with cognitive
theories (McCracken and Cate, 1986). This paper presents
an approach to obtaining and representing knowledge on
soil–landscape relationships based on cognitive theories on
human categorization, specifically, the prototype category
theory (Rosch, 1973, 1978; Smith and Medin, 1981;
Lakoff, 1987; Minda and Smith, 2001). We represent and
acquire the knowledge of soil–landscape model from soil
scientists in terms of prototypes and membership grada-
tions from prototypes. Variations of soil properties can then
be modeled through prototype-based reasoning. The next
section of this paper gives a brief introduction to prototype
theory and how it differs from “classical” category theory
which underpins traditional approaches to soil mapping. A
novel prototype-based fuzzy soil mapping method is then
presented. The advantages of this new method are
illustrated and evaluated through a case study.

2. Prototype theory

Developments in cognitive psychology over the last
30 years have radically changed our understanding of how
humans comprehend and describe the world through the
use of categories. The act of classification—the ability to
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distinguish that A is different from B—is possible because
of categories. Whenever we see something as a kind of
thing we are using categories, whether we are conscious
of it or not. Categories help to (1) structure the world for
us, (2) reduce detail, (3) aid memory retention and (4)
facilitate the understanding of relationships.

The classical view of categories, traceable back to
Aristotle, treats categories as empty containers into which
we place similar items. Similarity is derived from shared or
common properties and assignment is made using a mental
“check-list” of these attributes (Lakoff, 1987; Hahn and
Ramscar, 2001). Classical category theory further assumes:

1. Once placed in the container, all members of a
category are equally good examples of that category;

2. the boundaries between categories can be sharply
delineated;

3. no overlap exists between categories;
4. categories are free of individual concerns, such as

experience, neurobiology, intelligence, or embodied
sensory knowledge (i.e., kinesthetic intelligence).

It was not until the 1970s that the classical view of
categories received intense criticism and new views started
to emerge (Smith and Medin, 1981). The new theories
viewed categories as a human construct created by an
active mind searching for meaning rather than seeing them
as pre-existing structures in the world. According to this
new view, categories are conceptual structures resulted
from human's perception and interaction with the
environment (Hahn and Ramscar, 2001). Categorization
is a process of comparing new instance to previously
established (but highly malleable) mental representations
of the category and classification is based on similarity of
the instance to the existing representations.

Among the newly developed category theories,
prototype theory enjoys the largest support. Emerging
from Wittgenstein's earlier ideas on family resemblance,
centrality and membership gradience (Wittgenstein,
1953) and Zadeh's fuzzy set theory (Zadeh, 1965),
prototype theory (Rosch, 1973, 1978) stresses the fact that
category membership is not homogenous and that some
members are better representatives of a category than
others, which is noted as the “prototype effects” (Lakoff,
1987). Furthermore, it is believed that people may hold
more than one kind of prototype for a given category and
will deploy themdifferently depending upon the situation.
Other concepts in the prototype approach include:

1. Internal heterogeneity. Prototype categories allow for
uneven fit. Although penguins cannot fly, they are still
birds.
2. Indeterminate boundaries. The category “U.S. Sen-
ator” is unambiguous—one is either a senator or one
is not. However, what threshold defines “rich”? Is it
possible to be 5 cents short of being rich?

3. Categories are relative. Most qualitative categories
—hot, slow, old for example—only have meaning in
relation to their counterparts. Moreover, perception is
often dependent upon experience: a big city to one
person may be a village to another.

4. Categories change. Criteria for membership often
evolve, as in the case of video games expanding our
notion of “game”. Classical category theory assumes
that categories are static and do not change.

Characteristics of a category can be very broad and
haphazard. Categories are no longer seen as passive and
static “mental containers.” Instead, they are constantly
created, refined, and combined to create new categories,
and thereby, construct new knowledge.

The prototype of a category is a composite or average
of all the real instances experienced, that 1) reflects some
measure of central tendency of the instances' properties;
2) consequently is more similar to some category mem-
bers than others; and 3) is itself realizable but may not
necessarily be an instance (Smith and Medin, 1981).
Compared to the classical view of categories, the proto-
type is a summary representation of a category in terms of
features that may be only probable to its category mem-
bers (Davidsson, 1992).

In the case of soil classification, the continuous soil
body is categorized into soil classes (soil categories). Such
categories are conceptual structures and internal hetero-
geneity is shown when soil scientists think a certain pedon
is more representative of a soil class than another one,
although both are classified as the same class. Although
soils have been traditionally mapped as discrete polygons,
it has long been recognized that soil classes have indeter-
minate boundaries in both geographic space and attribute
space (Burrough, 1996). In themapping of soil polygons in
terms of soil–landscape units (Hudson, 1990), definitions
have always been relative, as in a convex (versus concave)
position or steep (versus not steep) slopes. Prototypes may
change and criteria for determining memberships evolves
through years of field work by experiencing more and
more real instances of a soil category. Such a prototype, if
realized as an actual instance, has the highest membership
among all instances of the category under concern. Soil
categorization/classification is then through the compari-
son of the new instance to such established prototypes.

Traditional soil inventory mapping, however, is rooted
in the classical view of categories. It overlooks the
prototypical characteristics of soil categories and leads to
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over-generalization in both the spatial and attribute
domain (Zhu, 1997b). Prototype category theory, as pre-
sented here, provides an alternative to acquiring knowl-
edge about soil categories by creating category prototypes
and defining membership gradations based on the
difference between a new instance and the prototype.

3. Prototype-based soil mapping

Based on prototype theory, a category can be repre-
sented by its prototype: a composite set of features that
summarizes the real instances of the category. This then
serves as the cognitive reference points for inference
(Khalidi, 1995; Minda and Smith, 2001). New instances
are identified and memberships determined by matching
the features (Khalidi, 1995; Markman, 1999). Our ap-
proach to soil mapping based on prototype theory con-
sists of two steps. The first step involves acquiring
knowledge about the soil categories from soil scientists
and representing the knowledge in terms of prototypes
and membership gradations. The second step is proto-
type-based soil inference.

3.1. Knowledge representation and knowledge
acquisition

Smith and Medin (1981) distinguish two kinds of
features related to the representation of a category: the
Fig. 1. Improved frame representa
“core features” versus the “identification features”. In
the case of soil classification, the core features are those
properties that are formally described in Soil Taxonomy
(Soil Survey Staff, 1999) and reveal relations between
classes, while the identification features are those that
are commonly used to identify the spatial occurrences of
certain soil classes. In soil survey, soils are mapped
based on local soil–landscape models that describe the
relationships between soil and its formative environ-
mental factors (Hudson, 1992). In the context of
predictive soil mapping (Scull et al., 2003; McBratney
et al., 2003), the formative environment is usually
characterized by variables such as terrain characteristics,
parent materials, etc. The representation of soil classes
for soil inference can thus use these environmental
factors as the identification features.

In order to incorporate the prototypical aspects of soil
classes, it is necessary to explicitly model the prototypes
and membership gradations in the knowledge representa-
tion. Specifically, the prototypes of classes can be stored
using a common frame structure (Minsky, 1975; Fillmore,
1985; Zhu, 1999), while themembership gradations can be
represented with optimality curves (Zhu, 1999). An
example of such frame is illustrated in Fig. 1. Each
frame defines the prototype(s) of a soil class and is also
linked to a set of optimality curves that describe how
membership responds when the values of the identification
features change. An optimality value of 1 refers to full
tion of the soil class Valton.
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membership, and 0 means no membership at all. For soil
class Valton (Fig. 1), we see that the membership drops
from 1 to 0 when the bedrock changes fromOneota to any
other type, and the membership decreases constantly when
slope gets steeper.

Knowledge represented in such a way can be obtained
from soil scientists through knowledge acquisition. If the
prototype of a soil class is realizable as a local instance, it
can be identified on a virtual landscape using a knowledge-
acquisition tool such as 3dMapper (Burt and Zhu, 2004).
3dMapper is a visualization software tool that can display
arbitrary 3D views of topography and allow for overlay of
GIS data layers that are necessary in the identification of a
typical soil landscape unit. Fig. 2 shows the identification
of the prototype of soil class Valton on a virtual landscape
using 3dMapper. In the identification of this prototype, soil
scientist can load in data layers that capture soil-formative
environmental factors. The values of these environmental
factors for the prototype can be recorded and stored in the
frame structure in Fig. 1. In many cases, however, the
prototype of a soil class may not be realizable as a real
instance. It is very common that certain soil classes (e.g.
soil series) may be first found and defined for other areas
and no typical pedons develop in the area currently under
concern. In these cases, prototypes should be defined by a
soil scientist in the form of descriptive knowledge in
knowledge acquisition. This involves the determination of
a list of relevant environmental variables (identification
features) for each individual soil class and the typical
environmental conditions under which the soil class is
Fig. 2. Identify the prototype of soil class Valto
expected to occur. Once such knowledge is obtained from
soil scientist through interviews, a set of frames (Fig. 1) can
be constructed to store the prototypes.

Given the prototypes defined for all the possible soil
classes in the mapping area, optimality curves can be
modeled empirically using a priori heuristic curves, as
known as the Semantic Import Model (SI) approach
(Burrough, 1989; McBratney and Odeh, 1997). The
choice for heuristic curves is based on the types of the
environmental variables (identification features) (Shi
et al., 2004). For a feature that is categorical (such as
bedrock geology), the function is Boolean as the one
shown in Fig. 1. For continuous features, the soil scientist
can choose from the various widely accepted models
discussed by Burrough et al. (1992) and MacMillan et al.
(2000). The next section will show the use of Gaussian
functions in a case study for soil mapping in Wisconsin.

3.2. Prototype-based inference

Once the expert knowledge is acquired in the form of
prototype frames and membership curves, it can be used
for prototype-based soil inference. For any pixel in the
mapping area, the degree of class membership to any
predefined soil class can be determined by their degrees
of similarity to the class prototype-based on the
membership curves. It seems easy to confuse proto-
type-based inference with case-based reasoning (Shi
et al., 2004), in which conclusions are drawn based on
similarities to existing classified cases. The important
n on a virtual landscape using 3dMapper.



779F. Qi et al. / Geoderma 136 (2006) 774–787
differences between these two approaches include: (1)
case-based reasoning is based on the exemplar view of
categories which takes specific exemplars as the
category's mental representation and assumes knowl-
edge about the category is implicitly embedded in the
individual cases. In contrast, prototype theory views
prototypes as the mental representation of a category
where knowledge about the category (e.g. identification
features) is explicitly represented (Smith and Medin,
1981); (2) case-based reasoning usually requires vast
amount of cases (exemplars) while prototype-based
reasoning, as will be shown in the case study, may need
only one or a few prototypes (central tendency) for each
category (Zeithamova, 2003); (3) case-based reasoning
uses examples that actually exist as members of the
categories under concern while prototypes may not be
actual instances, but rather abstract representations or
“textbook” examples that might not exist in a given
dataset; (4) case-based reasoning uses not only similar-
ities to the existing cases but also the typicality of the
cases themselves to determine memberships of a new
item, while prototype-based reasoning needs to account
for only the similarity to the prototypes.

Our paper suggests that prototype-based inference is a
better choice for fuzzy soil mapping due to the following
considerations. First, in the case of soil mapping,
abundant classified examplesmay not be always available
in order for a case-based reasoning to achieve acceptable
performance. Second, soil mapping using case-based
reasoning requires the existence of local instances of the
categories, but representative examples for some soil
Fig. 3. Location and topography of
classes may not exist locally within the mapping area.
Third, it is always desirable to have the knowledge
explicitly represented and documented for communica-
tion and map updates. Case-based reasoning does not
directly allow this because knowledge is embedded in
large amount of cases. Unlike in situations where it is
impossible to have an abstract summary of the category
features, the knowledge of a soil–landscape model can be
well represented in a holistic way using prototypes rather
than being implicitly embedded in individual exemplars
(which are unique to a data set and not readily transferable
to new data sets). And fourth, research in cognitive
psychology (Minda and Smith, 2001) has noted that
exemplar theory has often favored small, poorly struc-
tured categories, whereas prototype-based models may
represent better categories that are more complex andwell
structured. In our case study, wewill show the results from
both case-based reasoning and prototype-based inference
to compare the two in soil mapping.

4. Case study

The prototype-based soil inference approach was
implemented under the SoLIM framework to update the
soil survey of Raffelson watershed in La Crosse,
Wisconsin (Fig. 3). The watershed is located in the
“Driftless area” of southwestern Wisconsin that has
remained free of direct impact from the most recent
Pleistocene era continental glaciers. The area has a typical
ridge and valley terrain with relatively flat, narrow ridges.
There are moderate side slopes with gradients below 20%
the Raffelson Watershed, WI.
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and steep slopes with high gradient values around 50%.
The bedrock in this watershed is mainly of two types: (1)
Prairie du Chien dolomite and (2) sandstone of Upper
Cambrian age. Dolomite is only present on the high,
rounded ridge areas; elsewhere it was removed by
geologic erosion. Wherever the dolomite is eroded, the
bedrock is sandstone,with erosion and cutting responsible
for most of the differences in the landforms. The erosion
of bedrock has divided what was once a fairly level
plateau and has formed a relatively dissected upland with
apparent relief. Most ridges and valleys in the area have
been cultivated since late 19th century. Side-slopes are
generally forested, though some have been cleared for
pasturing.

In terms of parent material, there are as many as five
distinct types within the Raffelson watershed area,
which are Oneota (dolomite), Glauconite (sandstone),
Jordan (sandstone), Wonewoc (sandstone) and alluvial
materials. The complexity of parent material over the
area has led to the development of 16 different series
(classes) of soil in the watershed. In this study a senior
soil scientist from the local office of U.S Department of
Agriculture–Natural Resources Conservation Service
(USDA–NRCS) was asked to provide expert knowl-
edge in the form of a soil–landscape model concerning
the 16 soil classes.

In acquiring the knowledge of the prototypes for the
soil classes, we first interviewed the soil scientist and
obtained the descriptions of the central concept for each
soil class.We then identified realizations of the prototypes
for four soil classes Lamoille, Churchtown, Norden, and
Council on a virtual landscape because there exist the
fully representative instances for these soil classes in the
watershed. For the other 12 classes, we obtained the most
typical values of relevant environmental variables from
the soil scientist in an interview session. Finally,
membership changes were modeled with Gaussian
optimality curves as shown in Fig. 1. The cross-over
points (Burrough, 1989) were determined empirically
based on soil scientist's knowledge of the non-over-
lapping boundary of two adjacent central concepts.
Likewise, the shapes of the curves were determined
based on soil scientists' descriptions of the central
concepts. For example, if the central concept of soil
class Valton indicates it occurs on slopes that are less than
12% steep, the optimality curve is S-shaped (Fig. 1). On
the other hand, if a soil occurs on slopes that are steeper
than 20%, the curve has a reversed S-shape. The normal
bell-shaped curve indicates the highest membership in the
middle, with membership decreasing toward both tails.

In order to conduct soil inference with the acquired
expert knowledge, we first created a GIS database of the
environmental variables that were listed by soil scientists
as the identification features for the soil prototypes.
Because different soil classes may have different iden-
tification features, our GIS database is extensive to
include all features identified in knowledge acquisition.
The features used in this research include parent material,
elevation, slope gradient, surface curvatures (profile and
planform curvatures) (Zevenbergen and Thorne, 1987),
and two spatial variables: topographic wetness index and
percentage of colluvium from competing bedrocks.
Topographic wetness index is used to combine connec-
tivity information based on flow direction with slope
dynamics to represent the hydrological topographic cha-
racteristics that influence soil formation (Moore et al.,
1993; Band et al., 1993). Since colluvium from different
bedrocks tends to influence soil development, we
included the spatial variable that describes the percentage
of colluvium from competing upslope bedrocks for
footslope locations. Specifically, for a given footslope
location, the relative amount of colluvium it received from
a certain bedrock is approximated on the basis of the
accumulated upstream drainage cells originating from the
given bedrock polygon. The percentage of colluvium
from multiple competing upslope bedrocks is then
computed relatively.

During soil inference, our inference engine scans
through all pixels within the mapping area to compute
the similarity vectors. For any given pixel, the inference
engine first looks up in the knowledge base the
prototype and identification features defined for every
soil class. The value of similarity to this class is obtained
by imposing a fuzzy-AND operation (Zadeh, 1965) on
the optimality values for all identification features. The
use of fuzzy-AND operation follows Zhu and Band
(1994) and is based on the limiting factor principle in
ecology, which states that the limiting factor controls the
development of soil formation, thus the environmental
variable that gives the least optimality value determines
the membership of the soil.

Once the similarity vectors for all locations in the
mapping area are computed, a soil series map can be
created through the process of defuzzification (Janikow,
1998) by assigning each location the soil class that has
the highest membership value in the similarity vector.
The resulting raster map is expected to be spatially more
detailed than traditional soil survey based on the ‘area-
class’ model. In addition, uncertainties associated with
this classification process can be also computed from the
similarity vector (Zhu, 1997b) to depict the typicalities
of the classified soils and the transitions between soil
classes. The continuous variation of soils can be further
represented by continuous soil property maps derived



Fig. 4. Distribution of A horizon sand percentage for the Raffelson watershed: (left) from conventional soil survey map; (right) from prototype-based
inference.
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from the similarity vectors. A continuous soil property
(e.g. A horizon depth) map can be generated with the
following formula according to Zhu et al. (1997):

mij ¼

Xn

k¼1

skijm
k

Pn

k¼1
skij

ð1Þ

where vij is the property at site (i, j); vk is the typical
value (either defined in national standards or determined
locally) of that property of soil class k; sij

k is the
membership value of soil class k at (i, j); n is the total
number of soil classes in the area.

Field validation was conducted in order to evaluate
the prototype-based fuzzy soil mapping approach. We
collected data from 99 field points in the Raffelson
watershed, of which all were classified and assigned soil
series names by two experienced soil scientists from
USDA–NRCS local offices and 49 were given a texture
analysis to determine the percentages of sand and silt in
the A horizon. The surface texture property was selected
Fig. 5. Distribution ofA horizon silt percentage for the Raffelsonwatershed: (left)
because the relative sand, silt, and clay content of the
surface soil is a fundamental soil property that is closely
related to many other soil properties such as permeabil-
ity, porosity, water holding capacity, and soil fertility
(Posadas et al., 2001).

The validity of the prototype-based fuzzy mapping
approach was evaluated in two aspects. First, the
inference results were compared to the traditional soil
survey map in terms of classification accuracy, map
consistency and the level of detail both spatially and
parametrically. Second, the prototype-based inference
results were compared to case-based reasoning results in
terms of classification accuracy based on inferred soil
series maps and ability to capture continuous soil property
variations based derived soil property maps.

5. Results and discussion

5.1. Comparison of prototype-based inference results
with traditional soil survey map

The 99 sample points for field evaluation were chosen
based on two sampling strategies: transect sampling and
from conventional soil surveymap; (right) fromprototype-based inference.



Fig. 6. Scatter plots of observed A horizon silt percentage values vs. the values derived from traditional soil map (left) and prototype-based inference
(right) at 49 sample locations in Raffelson watershed.

Table 1
Accuracy of the derived A horizon texture in the Raffelson watershed:
the prototype-based inference result vs. the soil survey map

Percentage of sand Percentage of silt

MAE RMSE AC MAE RMSE AC

Inference result 7.75 12.65 0.85 6.49 11.11 0.85
Soil survey map 14.87 19.83 0.58 14.51 18.08 0.46
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point sampling. Transect sampling was employed to
cover transitions between major landscape units (such as
from ridge top to valley bottom and from concave draw
to convex nose positions) at 53 of the 99 sites. The
remainder of the 99 sites was selected by local scientists
based on the topography of the watershed to cover the
major landscape units (such as ridge tops, shoulder
positions, valley bottoms) throughout the watershed. The
soil series names given by soil scientists of these 99 sites
were compared to both those mapped in conventional soil
survey and those obtained from the inferred soil series
map derived from prototype-based inference. Of the 99
sites, the prototype-based approach correctly inferred the
soil series at 83 sites (∼83.8%), while the conventional
soil survey mapped 66 sites correctly (∼66.7%). A
thorough examination of both maps indicates that the
improved performance is largely explained by three
factors. First, spatial distributions of soil classes on the
inferred soil map follow accurately soil scientist's
knowledge about the soil–landscape relationships while
conventional soil map shows evidence of misplacement
of class boundaries. This is often inevitable in manual soil
survey due to the difficulty in precise determination of
landscape characteristics through visual perception.
Second, the automated approach allows for consistent
application of soil scientist's knowledge in the entire
mapping area while manual soil survey may introduce
inconsistency. And third, inclusions that are common in
conventional soil map due to limitations of scale can be
avoided with the raster based representation because soil
variations can be depicted in more detail.

In addition to improved accuracy in classifying soil
series, the advantage of prototype-based soil inference
largely lie in its ability to capture within-class variations
and transitions between class prototypes. As aforemen-
tioned, soil at each pixel location is represented by a
similarity vector and the soil series map is created by
defuzzifying the similarity vectors at all pixel locations.
Although each pixel location is labeled as the soil class
to which it has the highest similarity value, its similarity
to other soil classes provides information about the soil
pedon's typicality to its assigned class. In order to
measure numerically the accuracy of the inferred map in
capturing continuous variations of soil properties, we
created continuous soil texture maps using Eq. (1). The
typical soil texture values for each soil series (vk) that
appears in our study area were obtained from the sample
site associated with the highest similarity value to the
series according to Moore (2004). For the sake of
comparison, soil texture maps based on the published
soil survey map were also generated by assigning each
pixel the typical texture values of the soil series as which
the pixel is labeled in the map according to official soil
survey records. Figs. 4 and 5 show the maps of A
horizon texture in terms of sand and silt percentages,
respectively. The apparent difference between the maps
derived from the prototype-based inference and those



Table 2
Comparison of soil series inferred from prototype-based approach and case-based reasoning against the field observations for the Raffelson study area

Oneota
(39 samples)

Glauconite
(41 samples)

Wonewoc
(8 samples)

Jordan
(6 samples)

Aluvial
(5 samples)

Correct % Correct % Correct % Correct % Correct %

Prototype-based 37 95 36 88 5 63 3 50 2 40
Case-based 35 90 34 83 6 75 4 75 2 40

Table 3
Accuracy of the derived A horizon texture in the Raffelson watershed:
the prototype-based inference result vs. the case-based reasoning result

Percentage of sand Percentage of silt

MAE RMSE AC MAE RMSE AC

Prototype-based
inference

7.75 12.65 0.85 6.49 11.11 0.85

Case-based reasoning 11.07 15.92 0.76 8.93 13.23 0.75
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based on soil survey is the shown spatial details and
continuity of soil texture variations. Inferred texture
maps depict more details than those based on soil survey
and tend to show continuous changes between soil types
within the same bedrock breaks while the survey maps
show abrupt changes along class boundaries.

Closer inspection of the texture maps also show that
the prototype-based inference results provide realistic
details about spatial variations of soil texture. For
example, in the Raffelson watershed sandstone bedrock
(Wonewoc, Jordan) tends to develop soils with coarser
texture (higher sand and lower silt) than Dolomite
(Oneota). Within a catena, however, we would expect a
low percentage of sand on flat ridge tops due to the
preservation of finer materials and an increase of sand on
back slopes due to the erosion of finer materials (silt
percentage should exhibits a reversed pattern). Further-
more, convergent areas should have a low percentage of
sand and high percentage of silt due to the accumulation
of fine materials and divergent areas show the opposite.
This expected spatial pattern of soil texture is clearly
observable from the maps derived from inference results,
while the map based on soil survey lacks the same level of
details. The traditional soil survey classification differ-
entiates only two discrete soil classes occurring on ridge
top and back slope positions and does not capture the
continuous transitions between and within such positions.
As a result, the texture maps based on soil survey fail to
separate ridge and shoulder positions although they tend
to have different soil textures in reality and cannot
differentiate convex back slope from concave locations
where differential erosion and accumulation patterns
should result in distinct textures.

Particle-size analysis were conducted with samples
collected at 49 field sites using the pipette method (Kilmer
and Alexander, 1949) to determine A horizon textures.
The two scatter plots in Fig. 6 compare the estimation of
percentages of silt in A horizon from prototype-based
inference with those derived from soil survey map. Fig. 6
(left) shows the tendency of the inferred values to follow
the field observations, while Fig. 6 (right) shows little
correlation between the observed values and those
obtained from soil survey map. Three indices were also
computed to evaluate the performance of prototype-based
inference: mean average error (MAE), root mean square
error (RMSE), and agreement coefficient (AC). The AC is
defined as (Willmott, 1984):

AC ¼ 1−
nd RMSE2

PE
; ð2Þ

where n is the number of observations and PE the
potential error variance defined as:

PE ¼
Xn

j¼1

ðjPi−Ōj þ jOi−ŌjÞ2; ð3Þ

given that Ō is the observed mean, and Pi and Oi are the
estimated and observed value, respectively. AC values
vary between 0 and 1, with 1 indicates perfect agreement
and 0 means complete disagreement between the esti-
mated and observed values (Willmott, 1984). Table 1 lists
these statistics for comparing the performance of
prototype-based inference with the soil survey map in
estimating soil texture values. The MAE and RMSE
statistics for prototype-based inference are consistently
lower than those for the soil map, and the significantly
higher AC for prototype-based inference supports
previous evidence that prototype-based inference is able
to capture continuous variations of soil properties better
than the soil survey map.

5.2. Comparison of prototype-based inference with
case-based reasoning

Case-based reasoning has been implemented with the
procedure outlined in Shi et al. (2004) in the Raffelson



Fig. 7. A horizon sand percentage for the Raffelson watershed: (left) from prototype-based inference; (right) from case-based reasoning.
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watershed. A total of 78 cases were used to create a case-
based soil series map for the area. Of the 99 field sites,
the prototype-based approach correctly inferred the soil
series at 83 sites (∼83.8%), while case-based reasoning
inferred 81 sites correctly (∼81.8%). A breakup of soil
series based on parent materials provides more infor-
mation about the performances of the two approaches.
Table 2 lists the accuracies of the two approaches in
classifying soil series developed on the five different
parent materials in the watershed. The table shows that
prototype-based approach performs better on the two
most dominant parent materials that cover over 90% of
the watershed area while case-based reasoning shows
advantage in small areas (less than 5% of the total area)
of the two minor parent materials.

By examining the nature of the misclassified
samples, an apparent difference between the proto-
type-based inference and case-based reasoning were
noticed. The sample points misclassified by the
prototype-based inference in areas of the three minor
parent materials are those whose occurrences can not be
explained by soil scientist's soil–landscape model. In
other words, the landscape characteristics of these
sample points do not match those provided by soil
Fig. 8. (left) A horizon silt percentage for the Raffelson watershed: (left)
scientist for the observed soil series. One possible
reason is that these local soils exist as exceptions that are
caused by local disturbances. A second possible reason
is that soil scientist's knowledge about these soils is not
well-developed since the area is small and the for-
mulation of mental prototypes has not achieved a
sufficient level. In either case, the soil class cannot be
sufficiently represented in soil scientist's mind with a
single prototype that summarizes the central tendency of
real instances. Therefore inference based on prototypes
did not perform as well as inference based on individual
cases.

Prototype-based inference performed better than
case-based reasoning in the two dominant parent
material areas for which the prototypes have been
well-developed given sufficient experience with real
instances. It was noted that case-based reasoning
misclassified some of the samples although the
occurrences of these soils match exactly soil scientist's
knowledge. This could be due to the fact that case-based
reasoning requires large amount of real cases to achieve
high accuracy. Although it helped in capturing excep-
tions to general rules, the overall accuracy sacrifices
from the lack of cases at dominant landscape locations.
from prototype-based inference; (right) from case-based reasoning.



Fig. 9. Membership curves for soilValton based on curvature: (left)membership curve defined by 2 cases. (right)membership curve defined by one prototype.
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The performances of prototype-based inference and
case-based reasoning in modeling continuous soil prop-
erties are further compared through field evaluations using
A horizon textures at 49 sample points. Figs. 8 and 9
illustrate the A horizon soil texture maps derived from
case-based reasoning results with Eq. (1) in comparison to
those derived from prototype-based inference. And
Table 3 lists the statistics computed for both approaches.
It is noticeable that the property maps generated from
prototype-based inference exhibits more continuous
transitions than those from case-based reasoning (Figs. 7
and 8). The reason is that the prototype-based approach
models membership gradations with a set of curves that
give the highestmembership to instances that are closest to
class prototypes and make gradual decrease of member-
ships proportional to the deviation from prototypes. This
leads to smooth transitions between class prototypes.
Case-based reasoning, on the other hand, models instance
memberships based on the typicalities of the cases
themselves by taking into account the occurrences of
cases at similar landscape locations. The lack of cases at
certain landscape locations, therefore, may lead to
misrepresentation of the case typicalities and results in
faulty membership values. Fig. 9 shows the membership
curve simulated from 3 cases used in case-based
reasoning, where the lack of cases between point A and
B causes the unrealistic local dip in membership at P. As
a result, the property values derived using the similarity
vectors computed from these cases may not match the
observed values. As shown in Table 3, the texture
values of the 49 field points obtained from prototype-
based reasoning match the observed values significant-
ly better (AC=0.85 for sand and 0.85 for silt) than those
from case-based reasoning (AC=0.76 for sand and 0.75
for silt), although their accuracies in classifying soil
series names are not significantly different.

6. Conclusions

This paper has presented a fuzzy soilmapping approach
based on prototype category theory. The case study in the
Raffelsonwatershed shows that results from the prototype-
based inference are significantly more accurate than both
the conventional soil map in both soil class identification
and property estimation (accuracy increase of ∼17% on
soil series name prediction and agreement coefficient
increase of ∼0.3 on A horizon texture estimation).
Compared to case-based reasoning, prototype theory
shows significant improvement only in property estimation
(accuracy increase of ∼2% on soil series name prediction
and agreement coefficient increase of ∼0.1 on A horizon
texture estimation). This case study demonstrates that the
prototype-based approach is an effective method in terms
of knowledge acquisition and knowledge-based fuzzy
mapping. It shares the same advantages with previous
knowledge-based fuzzy soil mapping methods: the
automated mapping process is more efficient than manual
soil survey and reduces errors introduced in manual
compilation; soil scientist's knowledge of the local soil–
landscape model can be consistently applied in the entire
mapping area; and the fuzzy representation scheme allows
for the representation of high level of details of soil
information. Meanwhile, prototype category theory pro-
vides a cognitive basis for the process of knowledge
acquisition, knowledge representation and fuzzy soil
inference. It not only leads to more accurate classification
of soil categories, but also represents the knowledge of a
soil–landscape model explicitly in a holistic way that is
readily reusable and transferable to new data sets. In
consideration of the primary characteristic elements of
human categorization, the prototype-based approach
shows advantages over case-based reasoning in capturing
within-class variations and transitions between soil classes.
As noted by Suchan (1998, p.v–vi):

Prototype category theory can be a prompt to ima-
ginative thinking about the categories we craft or
choose before definitions are formalized for geographic
representation. A category precedes and influences data
collection, analysis, synthesis, and presentation. By
viewing categories differently, we may gain insights to
a given category and its relations to others.

Our case study shows that the prototype-based
approach applies successfully in the “driftless area” of
southwestern Wisconsin, especially for soils of which
the soil–landscape model is well-developed based on
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soil scientist's field experience. The general framework
(the knowledge representation, acquisition, and soil
inference schemes) should be also applicable in other
parts of the world. Successful application of this
approach, however, may require changes to the soil
category level and identification features being used
based on the local landscape characteristics and the
purpose of the inventory. Applications in other land-
scapes are under way to further examine the prototype-
based approach within the SoLIM framework.

Like other knowledge-based methods, we recognize
that this approach is highly sensitive to the quality of
the acquired expert knowledge. If the prototypes of soil
classes are poorly defined, the performance of this
approach can be less trustworthy, as shown by soils on
the Jordan and Wonewoc parent material in the study
watershed. In this case, proper utilization of specific
knowledge in terms of cases can improve the accuracy of
soil inference. The cognitive basis for inference based on
specific knowledge is the exemplar category theory.
Exemplar models store the specific exemplars as the
category's mental representation and inference is
accomplished through case-based reasoning. Studies
have shown that no single theory accounts for all real-
world categories: the exemplar theory is often favored
for small, poorly structured categories containing low-
dimensional stimuli, whereas prototype-based strategies
are better for representing categories that are better
structured and contain higher dimensional stimuli
(Minda and Smith, 2001). For real world categories
such as soil classes, the two situations may exist at the
same time. As suggested by psychologist Zeithamova
(2003), it should be necessary to adopt a composite
model in situations where both kinds of categories are
present in the categorization system. It thus is necessary
in our future research to develop a more versatile system
that allows for knowledge acquisition and inference
based on both prototypes and specific exemplars if not all
soil classes are represented as well-formulated proto-
types in soil scientist's mental representation of the soil–
landscape model.
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