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Abstract.? Phylogenetic diversity (PD) is a useful metric for selecting taxa in a range of biological applications, for exam 

ple, bioconservation and genomics, where the selection is usually constrained by the limited availability of resources. We 
formalize taxon selection as a conceptually simple optimization problem, aiming to maximize PD subject to resource con 
straints. This allows us to take into account the different amounts of resources required by the different taxa. Although this 
is a computationally difficult problem, we present a dynamic programming algorithm that solves it in pseudo-polynomial 
time. Our algorithm can also solve many instances of the Noah's Ark Problem, a more realistic formulation of taxon selec 
tion for biodiversity conservation that allows for taxon-specific extinction risks. These instances extend the set of problems 
for which solutions are available beyond previously known greedy-tractable cases. Finally, we discuss the relevance of 
our results to real-life scenarios. [Biodiversity conservation; comparative genomics; dynamic programming; phylogenetic 
diversity; Noah's Ark Problem; species choice; taxon selection.] 

The phylogenetic diversity (PD) of a set of taxa (Faith, 
1992), loosely defined as the total length of the evolu 

tionary tree connecting them, is a measure of increasing 
importance in a number of areas in biology, in particular 
biodiversity conservation (Crozier, 1997; Barker, 2002; 
Mace et al., 2003; Forest et al., 2007) and comparative 
genomics (see Pardi and Goldman, 2005, and references 

therein). In bioconservation, the protection from extinc 
tion of species or populations that have a large total PD 

(or, equivalently, that represent a large portion of evo 

lutionary history: Nee and May, 1997) is regarded as a 

good way to preserve genetic diversity (Crozier, 1997) 
and, more generally, diversity in the biological features 
of the existing organisms (Faith, 1992). In genomics, on 
the other hand, comparing homologous sequences with 
a high total divergence (which is to sequences what PD 
is to taxa) allows testing of evolutionary hypotheses and 
detection of various genomic features with high statis 
tical power (Thomas et al, 2003; Eddy, 2005; Pardi and 
Goldman, 2005). Comparative genomics, like biological 
conservation, is therefore better done on phylogeneti 
cally diverse sets of genes (or individuals, populations 
or species: the unit is not important and we will use the 
word taxa throughout). Genome sequencing projects are 

increasingly aware of this (Margulies et al., 2005). 
Often it will not be possible to save every existing 

species from large extinction events (such as the one 
we are currently causing) or to sequence every available 

genome. It is therefore natural to ask how choices should 
be made in these areas?"the agony of choice" is a pop 
ular phrase in bioconservation (Vane-Wright et al., 1991; 
Crozier, 1992). Because PD has come to be regarded as a 

good metric for measuring taxon importance, there has 

recently been interest in the formal optimization prob 
lems associated with it: how should we select taxa in 
order to maximize the resulting PD? The simplest of 
these problems, consisting of selecting a given number 

(decided a priori) of taxa, is easily solved by a greedy 
strategy (Steel, 2005; Pardi and Goldman, 2005). How 
ever, this scenario assumes that it is feasible to determine 
in advance the number of taxa that will be dealt with by 
the available resources, which is only true if the taxa re 

quire (roughly) the same amount of resources. In reality, 
this is usually not true: in bioconservation, for example, 

we may be designing a protected geographical region of 
fixed area, and different species will typically require dif 
ferent amounts of land; similarly, in the case of sequenc 
ing, different genomes have different sizes and therefore 

will have different costs, not only in terms of money but 
also of time and instruments required for sequencing. Po 

tentially, a choice will have to be made between selecting 
few "expensive" taxa or many "cheap" 

ones. 

Assuming that "costs" (whatever the available re 
source, e.g., money, time, labor, machinery, space, etc.) 
can be roughly quantified, a possible approach to limit 

"expenditure" could consist of modifying the evolution 

ary tree used as a basis for calculating PD by shorten 

ing each terminal branch by an amount depending on 
the cost of its taxon, so that the selection of costly taxa 

would be discouraged (Steel, 2005; Pardi and Goldman, 
2005). This is not very satisfying; for example, there is no 

guarantee that the selected taxa will have maximum PD 

among all the other choices of taxa with the same total 
cost. 

Here, we 
adopt 

a more direct approach: given taxon 

associated costs and an estimate of the available re 
sources, which we naturally call the budget, we aim to 
select the set of taxa of maximum PD among those sets 

with total cost at most equal to the budget. This can be 

re-expressed using some formalisms that will be use 
ful throughout this paper. Let X be the chosen phyloge 
netic scope (Pardi and Goldman, 2005), i.e., the set of taxa 
we aim to select from, and Tx their (possibly rooted) 
phylogenetic tree, where all branches have non-negative 
lengths. Each taxon (e.g., species or sequence) s e X has 
a nonnegative integer cost cs. We aim to 

find a subset S c X so as to 
maximize PD(S) 

subject to y^cs 
< B 

seS 

where B is an integer representing the budget. 
431 
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Although PD(S) has been simply defined as the total 

length of the smallest subtree of Tx connecting all taxa in 
S (the "minimum spanning path" of Faith, 1992), there 
have been different interpretations of this definition in 
the literature (see, for example, the discussion in Faith 
and Baker, 2006; Crozier et al., 2006). These probably de 
rive from different understandings of what a subtree is: if 

Tx is a rooted tree, do its subtrees necessarily include its 
root? For example, does the smallest subtree of the mam 

mals that contains human and chimp necessarily contain 
also the common ancestor of all mammals? It is clear that 
different ways of answering this question lead to differ 
ent values of PD and sometimes to different solutions to 
the optimization problem (1). It is therefore useful to dis 

tinguish between the two possible definitions of PD. We 
will call the unrooted phylogenetic diversity (uPD) of a set of 
taxa S ? X the total length of the smallest unrooted sub 
tree of Tx connecting all the taxa in S but not necessarily 
the root (assuming there is one). Conversely, when Tx is 

rooted, the total length of the smallest subtree of Tx hav 

ing the same root as Tx and connecting all the taxa in S 
will be referred to as the rooted phylogenetic diversity (rPD) 
of S (see Fig. 1). Clearly, denoting the root of Tx by p (and 
assuming p e X), we have that rPD(S) = uPD(S U {p}). 
In practice, the choice between these two measures will 
be determined by the intended application: uPD seems 
more appropriate for comparative genomics (as most 

sequence comparison techniques are independent of 
root placement), whereas rPD seems to be preferred in 
conservation biology (Rodrigues and Gaston, 2002). Fur 

thermore, as we will show in the following, the optimiza 
tion problems associated with these two metrics can be 
of rather different difficulty, with uPD generally posing 
more problems than rPD. Insisting on this distinction is 
therefore not merely a pedantic exercise. 

Incidentally, this ambiguity in the notion of PD is not 

surprising if we consider that Faith's paper introduc 

ing PD (Faith, 1992) was itself somewhat ambiguous: 
whereas one of the formal results (Faith, 1992:4, last line) 
only holds for uPD, the only example that allows discrim 

FlGURE 1. Difference between two definitions of PD. Highlighted 
are the branches whose lengths are summed in order to give rPD(S) 
(left) and uPD(S) (right). Assuming branch lengths are proportional to 
those in the figure, S is an optimal subset of size 2 for rPD but not uPD 

(wPD-optimal subsets of size 2 consist of the taxon on the left of the 

root, plus any other taxon). This shows that the solution of problem (1) 
is dependent on the definition of PD. 

ination between the two interpretations (Faith, 1992: fig. 
3a, set R3), is consistent with rPD but not uPD. In later 

papers (e.g., Moritz and Faith, 1998; Faith and Baker, 
2006), Faith and colleagues clarified their preference for 

rPD, but the alternative definition for PD has become 

widespread (e.g., Crozier, 1997; Barker, 2002; Steel, 2005; 
Minh et al., 2006) and other authors even refer to rPD as 

evolutionary history (Nee and May, 1997). 
One way of solving problem (1) would be to calcu 

late the cost and PD for all 2n subsets of the taxa, where 
n = \X\ is the number of taxa being selected among. 
However, this is not feasible even for moderate val 
ues of n, and therefore alternative approaches must be 

sought. The next two sections give novel algorithms that 

efficiently solve problem (1) for both definitions of PD. 
Before then, however, some considerations are needed. 

First, these algorithms will assume that T^ is a bifur 

cating tree, which clearly is not a limitation, as every 
multifurcating tree can be resolved into an equivalent 
bifurcating tree in which the new (internal) branches 
have length 0. Second, note that the formulation (1) can 
also be used to express the scenario whereby a num 
ber of taxa have already been conserved (or sequenced): 
the search for a maximally diverse extension (Pardi and 

Goldman, 2005) of an initial set I c X can be imple 
mented by solving problem (1) where all leaves in I have 
their cost set to 0. Third, note that all costs and the budget 
are (implicitly in the following) assumed to be integers. 
As will be shown, the algorithms' running times grow 
quadratically with the budget B. It is therefore impor 
tant to express all costs and budget as multiples of large 
units to limit the value of B and, consequently, running 
times. This granularity is not unrealistic, since real-life 
resources are inherently discrete (e.g., currencies) and 
costs and budgets will often be known not with great 
precision but only approximately. 

Compared to the problems for which an efficient so 
lution is known (Steel, 2005; Pardi and Goldman, 2005), 
problem (1) is clearly a step towards realism. In the con 
text of biodiversity conservation, however, there is an im 

portant factor that is not taken into account: different taxa 
have different risks of extinction (Witting and Loeschcke, 
1993,1995). For example, it is clear that if a species is not 

endangered at all, then expending resources to conserve 
this or a very closely related species is not a good choice. 
It is intuitive that conservation efforts should concen 
trate on the most endangered species, although under 
some particular conditions the contrary seems to be true 

(Weitzman, 1998). These aspects have been formalized by 
Weitzman (1992,1993,1998) into the suggestively named 
"Noah's Ark Problem" (NAP) (Weitzman, 1998), which 
is receiving increasing attention especially in environ 

mental and ecological economics (Simianer et al., 2003; 
Reist-Marti et al., 2003; van der Heide et al., 2005). Al 

though Weitzman (1998) derived a myopic, or greedy, 
ranking criterion that assigns each taxon a conservation 

priority score, an exact algorithmic solution to the NAP 
remains an open problem. 

Hartmann and Steel (2006) have shown that some spe 
cial cases of the NAP can be solved, again, with a greedy 
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algorithm. The algorithms we present here allow the res 
olution of further relatively general cases of the NAP, ex 

tending the scenarios considered by Hartmann and Steel. 

Although the main focus of this paper is on results that 
can be used in more than just biodiversity conservation, 

we will illustrate the consequences of our work for the 
NAP in Applications to the Noah's Ark Problem. 

Finally, we note that problem (1) (and the NAP 
we define below, which generalizes it) is NP-hard, as 
the knapsack problem, another well-known NP-hard 

problem (Cormen et al., 2001), is simply its special 
case for star-shaped trees (Hartmann and Steel, 2006). 
Technically, our algorithms are examples of pseudo 
polynomial time algorithms: although they run in 
time polynomial in B, this number may itself grow 
exponentially in the size of the input (see Garey and 

Johnson, 1979, for further discussion). 

A Dynamic Programming Algorithm 
for the Rooted Case 

When phylogenetic diversity is defined as rPD (as we 

implicitly assume throughout this section), problem (1) 
can be solved with a dynamic programming algorithm, 
which we will describe in this section. In the next section 
we will show that this algorithm can be extended to solve 
the unrooted (uPD) version of problem (1). 

The key observation that allows the use of a dy 
namic programming algorithm is that optimal solutions 
to problem (1) can be simply decomposed into optimal 
solutions to its subproblems?technically, problem (1) is 
said to have optimal substructure (Cormen et al., 2001). 
As a consequence, optimal solutions to problem (1) can 
be constructed by first tackling and solving its subprob 
lems and then combining the optimal solutions thus 
found. 

In order to see what this means in practice, we need to 
introduce some concepts that allow us to apply problem 
(1) to smaller portions of Tx. We define a clade as any 
subtree of Tx consisting of a branch a and everything 
else below a in Tx (note that we imagine Tx with its 
root at the top); a clade should be thought of as rooted 
at the top of its top branch a. In a bifurcating tree, ev 

ery clade is composed of a root branch and, possibly, by 
two other clades, which we call its subclades. (For exam 

ple, in Fig. 2, left, clade T has two subclades, C and 1Z, 
whereas C is composed of one terminal branch and no 

subclades.) 
A way to decompose problem (1) into smaller sub 

problems is to ask what is the best way to invest a given 
part of the budget into a given clade (i.e., which of the 
taxa in this clade should be selected given that part of the 

budget). It turns out that we can answer this question for 
all clades T and sub-budgets b < B incrementally, start 

ing from the clades consisting of only a terminal branch 
and then using the solutions already found to construct 
the solutions for larger clades. 

Formally, the subproblems consist of finding, for ev 

ery b e {0,1,..., B] and every clade T, a subset S o? the 
taxa in T that maximizes rPDr(S) subject to J2sgS cs -b 

Here rPDr(S) denotes the rooted PD calculated as if T 
was the whole tree (e.g., in Fig. 2, rPDn({E}) = 3.0). S will 
be called an (optimal) solution for T and b. Note that one 
of these subproblems (the one with T = Tx and b = B) 
simply coincides with problem (1) itself (Tx can always 
be seen as having a root branch, possibly of zero length, 
and therefore is a clade itself). Optimal solutions to these 

subproblems (or more precisely some sufficient informa 
tion about them, as we will see later) can be stored in a 
table (the solutions table) whose rows correspond to all 
the different clades and whose columns correspond to 
all the sub-budgets 0,1,..., B (see Fig. 2). Clearly, posi 
tion (T, b) will contain (information about) an optimal 
solution for T and b. We will show that this table can be 

completed one row at a time, starting from the bottom 
and going up. 

First, the solutions for the clades consisting of only 
a terminal branch (leading to, say, taxon s) are simply 
either the empty set 0 or {s}, depending on whether 
the taxon is too expensive to be taken with the avail 
able sub-budget (i.e., cs > b), ornot(cs < b), respectively. 
Therefore the rows of the solutions table corresponding 
to terminal branches (in Fig. 2, the 3rd, 4th, 6th, and the 
last two) can be filled without looking at the content of 

any other row. 

Second, when instead a clade T contains two subclades 

(C and 1Z), an optimal solution S for T and sub-budget 
b will simply amount to the union S = Sc U Sn o? two 

optimal solutions for two other subproblems: Sc will be 

optimal for C and some sub-budget i <b, whereas Sn 
will be optimal for 1Z and b ? i. (The reason for this is 

simple: S is naturally partitioned into Sc and Sn, con 

taining the taxa in C and 1Z, respectively; calling / the 
total cost of Sc, if either Sc were not optimal for C and 
/ or Sn were not optimal for 1Z and b ? i, then we could 

replace this suboptimal choice of taxa with a better one 
and therefore improve also S, but this would contradict 
the fact that S is optimal.) For example, in Figure 2, an 

optimal solution for T and b = 4 is {C, E}, where {C} is 

optimal for C and sub-budget 2, and {E} is optimal for 1Z 
and 2. 

Importantly, if we have already calculated and stored 

optimal solutions for C and 1Z and for all sub-budgets, it 
becomes possible to find a solution for T and any given b: 

denoting by S? the solution stored for C and i (and simi 

larly for S){ ),just compare all the subsets S? U S\?, S? U 

S^_1), ..., S{?] U S$ and take the one with the largest 
rPD. This is guaranteed to find an optimal solution for T 
and b, because the possibility of decomposing an optimal 
solution S into Se U Sn (where Sc is optimal for C and 
some i e {0,1, ...,b], and Sn is optimal for 1Z and b ? i) 

implies that rPD(S) = rPD(Sc U Sn) = rPD(Sf U s?~?) 
and therefore S? U S^ is also optimal. Note that if 
there are multiple optimal solutions for C and / (or for 1Z 
and b ? i), some of which are empty and some of which 
are not (possible if there are paths of zero length from 
the root of the clade to some of the taxa), we must ensure 
that the stored solution S? (or S^n ) is nonempty. Oth 
erwise, we may have that the union of optimal solutions 
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is nonoptimal (specifically, when rPD(Sc U S^) > 0 and 

rPD(S{2 u sn~n) 
= rPD (0 U 0) = 0). 

Consequently, we can fill the entire solutions table one 
row at a time: because the content of the row for a clade T 
can be completely derived from the content of the rows 
for its subclades C and 1Z, we just need to make sure 

that, whenever we fill the row for a clade, the rows for its 
subclades have already been filled. This can be achieved 

by dealing with the clades in a bottom-up order: let the 
rows in the table be ordered according to a top-down 
traversal of all clades (as illustrated in Fig. 2); then, fill 
the rows from the last to the first. Once the entire table 
has been filled, the solution to problem (1) is available 
from its top right corner. 

Although storing entire solutions in the solutions ta 
ble is feasible, this is certainly not efficient, as solutions 
can contain many taxa and therefore require a variable 
amount of memory and time to be handled. As we will 

show, instead of storing solutions, it is sufficient to re 
tain their rPD and the way the sub-budget should be 

partitioned between the two subclades (if there are any). 
More precisely, let ST be the solution found for clade T 
and sub-budget b; instead of storing ST , we will store 
two quantities: (a) the maximum rPD achievable in T 

with sub-budget b, which we call X?(b) and is equal to 

rPDr(Sr)', and (b) (only when T has two subclades) 
the sub-budget that solution ST allocates to T's left 

subclade, which we call tr(b)?obviously this also de 
termines the sub-budget to allocate to the right sub 

clade, b ? ir(b). Note that this does not mean that the 
actual expenditures in the subclades need equal tr(b) 
and b ? Lr(b), but rather that the left part of Sj- is opti 

mal for ir(b), and its right part for b ? tr(b). In Figure 
2, each cell in the solutions table shows Xr(b) at the top 
and, when appropriate, in the two bottom corners, tr(b) 
on the left and (for illustrative purposes) b ? ir(b) on the 

right, which indicates the way the sub-budget should be 

partitioned between the two subclades. 
Note that it is precisely thanks to storing tr(b) that so 

lutions need not be memorized; this information (once 
available) allows us to reconstruct the optimal solution 
found for any given T and b: just visit all the clades be 
low T in a top-down fashion always using the ?r values 
to find out what part of b should be devoted to each 

clade; in the end, b will have been broken into all the 

expenditures to allocate to each taxon in T; a taxon s 
should be included in the solution only if the expendi 
ture for s is greater or equal to its cost cs (see Appendix, 

Algorithm 3, RECONSTRUCT(T, b), for a formalization of 
this procedure). For example, imagine that we wish to 
reconstruct the solution for clade T and sub-budget 4 
in Figure 2; the two values at the bottom corners of the 
table entry for T and 4 (shaded gray) indicate that we 
should allocate 2 to ? and 2 to 1Z. C only contains taxon 

C, whose cost is exactly 2 and therefore should be se 
lected. 1Z has two subclades, one containing D and the 
other E; the table entry for 1Z and 2 indicates that nothing 
should be spent in the left subclade (so D should not be 

selected, as its cost is greater than 0) and that 2 should 
be assigned to the right subclade (so we do select E, as 

its cost is exactly 2); therefore, the solution for T and 4 is 

{CE}. 
The solutions table is filled with Xx(b) and tr(b) val 

ues in a way analogous to the one we described above 
in terms of whole solutions. The clades are visited in a 

bottom-up order. For the clades only consisting of a ter 
minal branch (leading to, say, taxon s), the Xr(b) values 
are set to 0 for entries with b up to (but not including) cs 
and to the length of the terminal branch for the remain 

ing entries; the tr(b) are left undefined, as they have no 

meaning for these clades. For example, see the solutions 
table row for C (shaded red) in Figure 2. 
When instead we visit a clade T composed of a branch 

(a) and two subclades (C and 1Z), we need to consider 
two cases. First, for all the entries with b smaller than 
the minimum cost among the taxa in T (which we 
denote by Cr), Xr(b) is set to 0, as clearly the sub-budget 
b is not enough to cover the cost of any of the taxa in 

T; note also that for these entries tr(b) can be set to 

any i = 0,1,..., b, as any of these values will lead to 

reconstructing the empty solution (for example, see the 
first two entries in the table row for T in Fig. 2). Second, 
for the remaining entries (those with b > Cr), X<j(b) is 
set to the maximum value among ta + Xc(0) + Xn(b), 
ta + Xc(l) + Xn(b 

- 
1),..., ta 4- Xc(b) + MO) (where ta 

represents the length of a), as this is the rPD of the 
best possible combination of complementary solutions 
for C and 1Z; the corresponding ir(b) is set to a value 
of / g {0,1,..., b] that maximizes Xc(i) + Xn(b 

? 
i). 

For example, suppose we aim to fill the entry for T 
and 4 in Figure 2. Because we are proceeding in a 

bottom-up fashion, the rows corresponding to C and 
1Z have already been filled, and the Xn and Xc values 
are all available. Therefore, A<r(4) = max{1.0 -f Xc(0) + 

Xn(?), 1.0 + Xc(l) + M3), ., 1.0 + A?(4) + Xn(0)} = 

max{5.0, 5.0, 5.0, 2.0, 2.0} = 5.0. This corresponds to 
consideration of combining the first entry shaded in 
red with the fifth in blue, the second in red with the 
fourth in blue, and so on; in the end we check which 
of these combinations has given the largest rPD. The 
value of ?r(4) is set accordingly: in this case, there are 
three equivalent combinations and ?r(4) could be set 
to 0, 1, or 2 (leading to two different but equally good 
solutions). 

In summary, the X and i values are calculated with 
the following recursions (which assume that T is com 

posed of branch a and, possibly, subclades C and 

K): 

M&) = 

'0 
ta < 
ta + max {kc(i) + kK(b 

- 
i)} 

?e(0,...,b) 

ir(b) = 

undefined if T has no subclades, 

arg max {Xc(i) + Xn(b 
? 

i)} otherwise. 

iib < cr, 
if a is terminal 

and b > cr, 
otherwise. 
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The above arg max term indicates the value of i that 
maximizes the expression on its right; when there are 
several such values, it indicates any one of them (e.g., 
chosen randomly) or, in the special case where b > c? 
and Xc(i) + Xn(b 

? 
i) = 0 for all /, any value of i such 

that the resulting ir(b) will cause reconstruction of a 

nonempty solution (this can be achieved by taking either 
/ = cc if cc < b, or i = b ? cn if Cn < b). Implicitly stor 

ing the empty solution would either be wrong (if ta > 0, 
any optimal solution is certainly nonempty) or (if ta = 0) 
might lead to constructing a nonoptimal solution further 

up in the tree (see discussion above). 
The various minimum costs Ct for all clades should 

also be derived and stored. For a given T, this can be 
done when we set about filling its row, by either simply 
copying cs (if T is a terminal branch leading to s ) or taking 
the minimum between cc and Cn (if T contains subclades 
? and 1Z). In Figure 2, the Cr values are reported on the 

right of the solutions table. 
Once all the X and i values have been derived in the 

solutions table, the solution implicitly found for the top 
right entry of the table is also a solution to problem (1) 
and it can be reconstructed using the ?r values in the way 
we described above. However, there may be more than 
one optimal solution to problem (1), all equally good with 

respect to rPD but possibly involving different overall 

expenditures. It is not guaranteed that the solution re 
constructed as described above is the cheapest among 
them. Although this is not required by the problem for 

mulation (1), this is clearly a desirable property and easy 
to achieve: by looking at the solutions foi-iic* for smaller 

sub-budgets, we can check if the budget can be reduced 
without affecting the optimal rPD. This corresponds to 

scanning the solutions table from its top right entry to 
wards the left, until a reduction in Xrx (b) is observed. The 
solution for the last (i.e., least) b with Xtx(b) 

= 
Xq-X(B) is 

a minimal-cost rPD-optimal solution and can be recon 
structed in the usual way In some cases it may even be 
of interest to derive all (minimal-cost) optimal solutions, 
which could be achieved by storing mutiple tr(b) val 
ues and using all of them in the reconstruction at the 
end. However, we note that the number of solutions to 
reconstruct may grow exponentially in the size of the 

problem. 
This concludes the description of our dynamic pro 

gramming algorithm for maximizing rPD subject to 
cost constraints. A different description, less verbose 
and directly convertible into computer code, is given by 
the pseudocode in Algorithms 1, 2, and 3 in Appendix. 

Additionally, the dynamic programming algorithm 
could be modified to solve problem (1) for trees with 
branches of any length (i.e., where negative lengths are 

allowed), but for simplicity we do not describe this here. 

Regarding the computational complexity of our algo 
rithm, the calculation of a single entry in the solutions 
table requires 0(b) = 0(B) time, as all possible ways to 

split sub-budget b may need to be examined. This must 
be repeated for each of the (In 

- 
1)(B + 1) = 0(nB) 

subproblems (where n = \X\), giving a total of 0(nB2) 
operations for filling the solutions table. The reconstruc 

tion of an optimal solution for problem (1) from the 

top right entry only takes 0(n) time, as it consists in a 

top-down traversal of all the 2n ? 1 = 0(n) clades of T%, 
in which each clade can be dealt with in constant time. 

Therefore, the entire algorithm has time complexity 
0(nB2). Memory complexity is dominated by the size 
of the solutions table, and so is O(nB). 

Finally, we note that problem (1) could also be formu 
lated as an integer linear programming (ILP) problem 
(in a way analogous to that of Rodrigues and Gaston, 
2002) and solved with standard off-the-shelf techniques. 
However, there are no guarantees that the running time 
of these algorithms would be better than exponential in n. 

The Unrooted Case 

We now turn to solving problem (1) with PD defined 
as uPD, which we call the unrooted problem. An example 
is given in Figure 3. At first glance, an obstacle to its 
solution seems to be that there is no evident way to break 
it into smaller problems: even if we solve the unrooted 

problem on portions of Tx, this does not tell us much 
about the solution for the whole tree. 

The key observation here is that a solution to the 
unrooted problem, if not the empty set, is equal to 

{s} U R, where R is a solution to the rooted problem with 

budget B ? cs applied to Tsx, which denotes the version 
of Tx rooted in taxon s. (For example, in Figure 3, 
{A,C,D,E}, the optimal solution to the unrooted prob 
lem, can be written as {A} U {C,D,E}, where {C,D,E} 
is a solution to the rooted problem on Tx with budget 
B - cA = 8 - 1 = 7.) 

This allows us to reduce the unrooted problem to a 
number of related rooted problems: we could iteratively 
root Tx in each of its taxa s and calculate a solution Rs 
to the rooted problem with budget B ? cs (or skip s if 
cs > B); any of the subsets {s} U Rs with the largest uPD 

(or, equivalently, any of the ones with the largest rPD(Rs )) 
is a solution to the unrooted problem. 
However, this procedure would involve repeating 

the rPD-maximization algorithm once for every taxon, 
thus requiring 0(n2B2) time. A more efficient approach, 

which we describe in the Appendix, consists of extend 

ing our notion of clade so that it includes all the dif 
ferent taxon-rootings Tx) as before, we solve the rooted 

subproblems (with many possible sub-budgets) for all 
the clades in Tx. Because this now includes additional 
clades not present before, we devise a new ordering of 
the clades so that we can incrementally derive new so 
lutions from the previously calculated ones. In the end, 

we compare the rooted solutions found for the various 

Tx) any of the best ones will provide us with an optimal 
solution to the unrooted problem. 

This more efficient algorithm for the unrooted problem 
is practically equivalent in computational complexity to 
the one in the last section. As described in the Appendix, 
there are now 2(2n 

- 
3) clades, and therefore still 0(n) 

rows in the solutions table (and 0(B) columns). Deriva 
tion of the solution for T and b from the other stored 
solutions and reconstruction of any of these solutions 
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FIGURE 2. On the left, an instance of problem (1) (rooted case). Branch lengths are indicated by the numbers to the side of the branches. 
Taxon costs are in the boxes next to the leaves (green) and the budget is B = 8. The following clades of Tx are highlighted: T (broad grey 
branches), C (red branches), 1Z (blue branches). On the right, the corresponding solutions table (the content of some rows is omitted for clarity). 
The correspondence between clades and rows is indicated by dotted lines (colored in the cases of T, C, and 1Z). Rows are ordered according to 
a top-down visit of all clades of Tx: 1: ((A,B),(C,(D,E))); 2: (A,B); 3: A; 4: B; 5: (C,(D,E)); 6: C; 7: (D,E); 8: D; 9: E. To the right of the table are lT 
values and arrows indicating the dependencies among the rows. Column headings 0-8 indicate sub-budgets b. The top right corner (shaded 

orange) of the solutions table indicates the optimal rPD (11, achieved by selecting taxa {A, C, D, E}). A naive greedy algorithm?consisting of 

always selecting the taxon that adds most PD among the ones that can be selected with the currently available budget?would not work in this 
instance: after selecting D and A (at a cost of 3 + 1 = 4), the remainder of the budget (B 

- 4 = 4) would be used on B, leading to a total rPD of 
10.5. Also note that another greedy algorithm?consisting of always selecting the taxon with the highest ratio between added rPD and cost c, 

(Hartmann and Steel, 2006)?would work in this instance but fails on the problem with budget B = 4; whereas the (unique) optimal solution for 
this budget is {A, D}, with an rPD of 9 (yellow cell), this greedy algorithm would initially select A and then E, thus including a taxon that is not 

part of the optimal solution. 

012345678 
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((A,B),(D,E)) 
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11 

FIGURE 3. On the left, an instance of problem (1) (unrooted case). Branch lengths are indicated by the numbers to the side of the branches. 
Taxon costs are in the boxes next to the leaves (green) and the budget is B = 8. On the right, the corresponding solutions table (partially filled, 
for clarity). Rows correspond to the clades specified to the left, whereas column headings 0-8 indicate sub-budgets b. Arrows to the right of the 
table indicate the dependencies amongst the rows; see Appendix for an explanation of the row ordering (and the use of the node highlighted 
in pink). Orange cells correspond to solutions to the rooted subproblem for clades Tx and sub-budgets B ? cs. Dotted arrows and yellow cells 
show the reconstruction of the solution {A, C, D, E} to the unrooted problem (visited taxa are marked with a green tick or a red cross, depending 
on whether they should be selected or not, respectively). 
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using the ?r values are achieved in exactly the same way 
as before and therefore still take 0(B) and 0(n) time, 
respectively. Comparing rPD(Rs) for all the rooted so 
lutions Rs in order to find the unrooted solution {s} U 

Rs also takes just 0(n) time. Therefore, this algorithm 
has time complexity 0(nB2) and memory complexity 
0(nB). 

Applications to the Noah's Ark Problem 

In the NAP (Weitzman, 1998) each taxon s e X in a 

phylogenetic tree Tx survives until some future time 
with a probability ps that depends on the expenditure 
that is put into conserving s. The objective is to subdi 
vide a given budget B among the available taxa to maxi 
mize the rPD o? the surviving taxa or, more precisely, the 

expected value of this random variable. By increasing 
the expenditure ys for taxon s, the probability of survival 

will also (generally) increase as a function ps(ys). In the 

original formulation (Weitzman, 1998), ps grows linearly 
from an initial value as to a maximum probability bs, as 
the expenditure is increased from 0 to a cost cs. For this 

shape of ps (ys ) (and others) optimal solutions to the NAP 
are "extreme"; i.e., for every taxon s (with the possible 
exception of one taxon), either nothing or the whole cs is 

spent on it (Weitzman, 1998). Following this, Hartmann 
and Steel (2006) have cast the NAP in a form (not en 

tirely equivalent to the original NAP) analogous to that 
of problem (1): 

find a subset S c X so as to 
maximize E(rPD \ S) 

subject to y2Cs 
? B 

seS 

Here, E(rPD | S) denotes the expected rPD o? the taxa 
that "survive," where taxa survive independently with 
a probability of either bs or as, depending on whether 
s e S or not. It is easy to see that 

E(rPD|S) = 5>(l- fl i1"**) It (i-MJ a \ seCa-S seCanS ) 

(3) 

(Hartmann and Steel, 2006), where the sum is over all 
branches of Tx and Ca denotes the set of taxa below 
branch a (again, Tx is pictured with its root at the top). 

Note that problem (1) is the particular case of problem 
(2) obtained by setting as 

= 0 and bs = 1 for all taxa. We 
will refer to problem (1) as the 0-4 1 NAP and to (2) as the 
a s -4 bs NAP This notation indicates the probabilities of 
survival without and with conservation (left and right of 
the arrow) and the conservation costs (above); these may 
be constants or taxon-dependent (indicated by variables 
indexed by taxon s). 

There is in fact a hierarchy of subproblems of the 
as -4 bs NAP The simplest of them is the 0 -> 1 
NAP, which can be solved with a greedy algorithm 
(Steel, 2005; Pardi and Goldman, 2005). There are other 

greedy-tractable regions in this hierarchy, notably the 
0 -> 1 NAP applied to an ultrametric tree and the 
1 ? c?s -> 1 ? Kqs NAP, where for every taxon s the initial 

probability of extinction qs can be reduced by a constant 
factor K (0 < K < 1) by paying a constant price c (Hart 

mann and Steel, 2006). 
We will show that other (larger) regions of this hi 

erarchy can be solved with dynamic programming al 

gorithms: our base algorithm for problem (1) already 
demonstrated this for the 0 -> 1 NAP, and we now show 
that the same holds, more generally, for the fls4l NAP. 
This is the relatively realistic scenario whereby conser 
vation projects with variable costs cs completely ensure 
survival of the species to which they are applied, which 
can have different initial risks of extinction (as depends 
on s). This may be the case when a taxon can be saved by 
simply saving a few of its individuals, be it in a zoo or 
in a prophet's ark. An example of as -4 1 NAP is given 
in Figure 4: panel (a) gives a tree Tx for 52 Madagascar 
lemurs (including all those in the current IUCN Red List 
of Threatened Species, IUCN, 2006) and putative costs 
cs of conserving each of them, and panel (b) shows the 

probabilities of survival without conservation, as, and 
their effect on this problem, as explained below. 

The key observation here is that, for any instance of 
the a s -4 1 NAP, it is possible to transform the input tree 

Tx into a new tree Tx so that the gain in E(rPD) obtained 

by conserving the taxa in S coincides with the rPD of S in 

Tx, for any possible subset S ? X. As a consequence, we 

can solve any as -4 1 NAP by solving with our base al 

gorithm the corresponding rPD-maximization problem 
on the transformed tree Tx. In Figure 4, for example, the 
tree in panel (b) is the transformation Tx o? the tree Tx 
in panel (a). 

Formally, define T'x as the tree obtained from Tx by 
multiplying each branch length ta by a factor equal to 

us?e 0- 
~~ 

as)- Then, the gain in E(rPD) due to conserv 

ing the taxa in any subset S can be simply derived from 

Equation (3): 

E(rPDTx | S) 
- 

E(rPDTx I 0) 

a:CanS=tt seCa 

+ ? *? -?f? 
a:CanS^0 a 

i-TJ(i-fls) 

i-TJ(i-?s) 
seC? 

= 
? taUCi-as) 

= rPDT^S), 
a:CanS^8 seCa 

and is equal to rPD(S) calculated on Tx, as stated above. 
It is interesting to reflect on the intuitive meaning of 

this transformation. The new tree is obtained by multi 

plying each branch by the probability that, as a result 
of extinctions, that branch will disappear from the tree 

connecting the surviving taxa. Therefore, we can think of 
this as a form of weighting that gives more importance 
to those parts in the tree that are more likely to get lost. 
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For example, in Figure 4b, most of the internal branches 
in Tx have a length that is very close to 0. This is be 
cause these branches have many taxa below them and 
are therefore unlikely to be lost. Contrast this with the 
internal branch leading to the two Vva subspecies: this 
branch is relatively long, as both Vva ru and Vva va are 

likely to become extinct. 
Thanks to this transformation, a subset of taxa 

that maximizes E(rPD) on Tx subject to any given 
constraint also maximizes rPD on Tx subject to that 
same constraint, and vice versa. If the constraint is 

simply a limit on the number of taxa, this means 
that any as -> 1 NAP can be solved by solving the 

corresponding 0 -> 1 NAP on the transformed tree Tx, 
which can be done with a simple greedy algorithm 
(Steel, 2005; Pardi and Goldman, 2005). This result 

was also shown by Hartmann and Steel (2007), who 

independently derived the same branch length rescaling 
described above. The tractability of the as -> 1 NAP 
with a greedy algorithm also derives from its being a 

subproblem of the greedy-tractable 1 ? qs -> 1 ? Kqs 
NAP (Hartmann and Steel, 2006). 

More generally, if the constraint is of the cost-budget 
type, the above means that any as 4 1 NAP can be 
reduced to the corresponding 0-4 1 NAP on the 
transformed tree Tx, which can be solved with our 
base algorithm. Being able to solve the rather general 
a s -> 1 NAP is a novel result, and we suspect that the 

applicability of dynamic programming techniques to 
the NAP is even wider. 
Notice also that, even more generally, any as -4 bs 

NAP (problem 2) can be reduced to a NAP with 
the form 0 ?> b's. Constructing Tx as before, a simi 
lar proof to that above shows that solving any as -4 bs 

NAP on Tx is equivalent to solving the correspond 
ing 0 -4 (bs 

- 
as)/(l 

- 
as) NAP on Tx. Even though we 

cannot use this reduction to solve the general as -4 bs 
NAP (as realistic algorithms to solve the 0 -4 bs NAP are 
not currently known), this shows that all the difficulty 
of the general NAP is somehow already present in the 
0 ^4 bs NAP. 

It is important to realize that our dynamic program 
ming algorithm cannot be applied or adapted to the 

g?n?rales -4 bs NAP (or the O -^4 bs NAP), as these prob 
lems do not have optimal substructure (it is not dif 
ficult to construct an example where the solution for 
a clade T is not obtainable as the union of solutions 
for T's subclades). One exception to this is the 0 -> b 

NAP, which does have optimal sustructure and there 
fore can be solved with a simple adaptation of our base 

dynamic programming algorithm. As the 0 -> b NAP 
can hardly have any practical importance, we do not de 
scribe this adaptation here, but this observation allows us 
to show that, interestingly, the class of (known) greedy 
tractable subproblems of the NAP (Hartmann and Steel, 
2006) is contained in the one tractable with dynamic pro 
gramming algorithms: the 0-4 1 NAP applied to an ul 

trametric tree is a subproblem of the 0-4 1 NAP tout 
court, and any 1 - qs -> 1 - Kqs NAP can be reduced (fol 
lowing our observation in the preceding paragraph) to 
a corresponding 0 -> 1 ? k NAP, also solvable (as just 
mentioned) with dynamic programming. 

Finally, note that problem (2) assumes a rooted 
definition of PD. Although we are not aware of work 
on the NAP using uPD instead of rPD (which we call 

uPD-NAP), it is natural to ask whether the techniques 
presented here (and in other papers such as Hartmann 
and Steel, 2006) can also be applied to the uPD-NAP. 

Using the ideas in this and the previous section, it is 

possible to solve any as -4 1 uPD-NAP. Its solution is 
either empty or equal to {s} U R, where R is a solution 

to the fls 4 1 NAP on Tx with budget B ? cs (which we 
can solve as we just showed). Therefore, the problem can 
be solved by rooting the tree in each taxon in turn; for 
each rooting, transform Tx in the way described before 

(this transformation is dependent on the position of the 
root, so we will get a different tree each time), and solve 

the resulting 0 -> 1 NAP with budget B ? cs. Denoting 
by Ri the solutions obtained when rooting in each taxon 
Si, then a solution to the fls 4 1 uPD-NAP is among 
{si} U Ri, {s2} U R2,..., {sn} U Rn and can be found by 
simply comparing their E(uPD). Note that the time 

complexity of this algorithm will now be 0(n2B2), as 

the 0-4 1 NAP will have to be solved on n different 
trees. 

< 

FIGURE 4. Application of our algorithms to the conservation of lemurs in Madagascar. Example for illustrative purposes only (the data are 

partly concocted), (a) An instance of problem (1) (the 0 4 1 NAP). A tentative phylogenetic tree of 52 lemurs (species and subspecies) was drawn 
on the basis of some recent publications (e.g., Yoder, 1997; Yoder et al., 2000; Pastorini et al., 2001, 2002; Roos et al., 2004; Andriaholinirina et al., 
2006). The correspondence between taxa and abbreviations is reported in the Appendix. Taxon conservation costs (in the boxes next to the leaves) 
were estimated from information available from the IUCN Red List (IUCN, 2006) and can be considered as expressed in terms of the underlying re 
source of limited availability; e.g., as millions of euros. The solution of this instance for a budget B ? 20 consists of taking the taxa in the set {Hgr gr, 

Ala, Iin, Lmi, Pfu el, Cme, Atr, Mmu, Dma}. Highlighted is the tree that spans these taxa. We note that this solution cannot be obtained from the one 
for B = 19 ({Hgr gr, Ala, Iin, Lmi, Pfu el, Cme, Cma, Mmu, Dma}) through a greedy step (i.e., a simple addition) but needs exchange of one taxon 

(Cma) for another (Atr). (b) Phylogenetic tree obtained from the one in (a) by applying the transformation described in the text for the as -4 1 NAP 
For each taxon s, its cost cs is indicated by the adjacent box and its probability of survival as by the white area in the adjacent circle. The probabilities 
of survival were derived from the IUCN Red List classifications (IUCN, 2006): taxa classified in risk categories CR, EN, VU, NT, LC were given prob 
abilities 5,25,50, 75, and 95%, respectively Highlighted is the tree that spans the taxa in the solution for the underlying as -4 1 NAP with budget 
B = 20. Again, this solution cannot be obtained through a greedy step from the one for B = 19 but needs exchange of one taxon (Mra) for other two 
taxa (Aoc and Mmy). (c) Plot showing the (expected) phylogenetic diversity of the optimal solution for the two NAP instances above as a function 
of the budget B. The lower and upper graph correspond to the 0 -4 1 NAP and the as -4 1 NAP, respectively. The vertical dashed line corresponds 
to the budget (20) for the two solutions above, which achieve a rPD and E(r P D) equal to 58 and 87% of the total tree length (5.44), respectively. 
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Discussion 

Firstly, we have presented a new formalization of the 

problem of selecting taxa to maximize the retained phylo 
genetic diversity. The basic advantage, compared to past 
formalizations (Steel, 2005; Pardi and Goldman, 2005), 
is the possibility of taking into account the different re 
sources required by the different taxa, which we assume 
to be quantifiable into taxon-specific costs. 

Secondly, we have given algorithms that solve this 

problem for two definitions of PD. These algorithms 
run in 0(nB2) time and use 0(nB) memory, where n 
is the number of taxa to be chosen from and B is the 

budget expressed as the number of units of a relevant 
resource (e.g., currency). The fact that the computa 
tional complexity depends on B may seem problem 
atic: for example, if the underlying resource is money, 
the budget could be a very large number (of the order 
of the millions, if measured in common currencies) and 

0(ftB2)-time algorithms would be unusable in practice. 
To avoid this, B and all costs should be preprocessed 
and expressed as multiples of a large unit (such as their 

greatest common divisor, efficiently found with a gen 
eralization of Euclid's algorithm; Cormen et al., 2001). 
For example, in the case of conservation projects with 

budgets of the order of millions of euros, we may ex 

press everything in multiples of 10,000. This is prob 
ably precise enough to satisfy the accountants, makes 
B o? the order of hundreds and permits the algorithms 
to run quickly. In order to check their efficiency, we 

implemented our algorithms (C++ code available via 

http://www.ebi.ac.uk/goldman/rats) and found that 
for values of B of the order of the thousands, our pro 
gram still only takes few seconds per clade (1.7-GHz 
Pentium processor with 512 MB of RAM), and up to few 
minutes per clade for B = 100,000. Note that these are 
the times needed to process one clade (i.e., fill its row 
in the solution table) and that they do not depend on 
the size of clades (because each nontrivial clade will re 

quire the same 0(B2) operations to be processed). The 
total running time is obtained by multiplying the clade 

processing time by the number of clades (2n 
? 1 in the 

rooted case) and therefore depends on the number of 
taxa n but is independent of the tree shape. 

Thirdly, we have shown that many cases of another 
formalization of taxon selection, the Noah's Ark Problem 

(NAP), can be transformed into instances of the problems 
solvable with our algorithms. We are currently working 
on the application of dynamic programming techniques 
to a form of the NAP that allows for more general rela 

tionships between conservation expenditure and proba 
bility of survival. 

Although we realize that optimization problems such 
as the one formulated here (or even the NAP) are mainly 
of theoretical interest currently, it is still meaningful to 
ask how realistic and complete they are in including 
factors relevant to the selection of taxa. Many factors 
other than PD can be incorporated into problem (1), 
and the NAP, by adding to the length of each terminal 
branch a term quantifying the taxon's importance in 
relation to those factors (Steel, 2005; Pardi and Goldman, 

2005)?this term coincides with what Weitzman (1998) 
calls the species' utility. Whereas for comparative 
genomics this approach seems capable of dealing with 
most selection criteria (Pardi and Goldman, 2005), for 

biodiversity conservation one of the most important 
factors, the actual probability of extinction, is much 
better dealt with by the NAP. 

An important question that may be asked regarding 
the realism of our problem (and the NAP) is whether 
PD is a good guiding criterion for taxon selection. For 

comparative genomics, answering this question will 
involve investigating the relationship between uPD(S) 
and the statistical power (of tests on evolutionary 
processes) that results from comparing the sequences 
in S. Along the lines already considered by Eddy (2005) 
and McAuliffe et al. (2005), it will be interesting to 
tackle questions such as: Under which circumstances 
is PD maximization not the best way to ensure high 
statistical power? Do these circumstances ever arise in 

practice? Is it possible to define an alternative measure 
of sequencing worth that more closely reflects power? 
Are the answers to these questions dependent on which 
statistical test is going to be carried out? 

As for conservation biology, we note that PD is not 
the only measure of conservation worth that has been 

proposed (reviewed by Crozier, 1997). A widespread 
characteristic of proposed measures is that, as May rec 
ommended in his seminal note (May, 1990), they give 
central importance to taxonomic (phylogenetic) relation 

ships. Because they try to formalize the intuitive notion 
of diversity on a phylogenetic tree, many of them are 

mathematically related. Genetic diversity (GD) (Crozier, 
1992, 1997) is defined as the probability that the set of 
taxa preserves more than one al?ele per site. A branch 
a in the tree is labeled with pa, the probability that an 
al?ele changes in the transition from one end of branch 
a to the other. Then GD(S) = 1 ? Yla(l 

? 
pa), where the 

product is over all branches a that are preserved (i.e., 
all branches in the smallest unrooted tree connecting all 
taxa in S). GD turns out to be strictly related to uPD: 
if we assume that pa and the branch length ta are sim 

ply related through pa = 1 ? e~Kta, which is typical of 
sites where the number of al?eles is so high that it is 

practically impossible to change back to a previously 
held state, then GD(S) = 1 - Ua e~Kta = 1 ~ e~K^a ta = 

1 
? 

e-K-uPD(S)^ Therefore, as GD grows monotonically 
with uPD, maximizing GD is equivalent to maximizing 
uPD. This result was suggested without proof by Crozier 

(1997). 
Even species richness Gaston and Spicer, 1998 (the num 

ber of different species), which is probably still the most 
common measure of biodiversity for conservation, is 

mathematically related to PD: it is simply equivalent to 
rPD in an ultrametric star tree. Therefore, all the results 

presented here can be extended to the maximization of 

(expected) species richness (but the optimization prob 
lems are greatly simplified and better algorithms exist). 
The number of taxa conserved can also be used as a 

secondary criterion to discriminate among equally good 
choices of taxa (i.e., those with equal PD and total cost) 
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and this (or even other criteria) can be easily incorporated 
in our algorithms by suitably setting ir(b) when multiple 
choices for this value produce the same rPD. 

Furthermore, measures of diversity mathematically 
equivalent to PD are likely to arise in many other 

fields?e.g., ecology (Petchey and Gaston, 2002a, 2002b) 
and social sciences (Nehring and Puppe, 2002, 2003)? 
whenever a tree is a good way to represent relationships 
(often nonevolutionary) among the objects of study. For 

example, a tree ("dendrogram") is often the output of 
data clustering techniques (Everitt et al., 2001; Eisen et 

al., 1998). Our results may have even wider applicability 
than we have suggested here. 

An important shortcoming of the NAP is that species 
are assumed to survive or become extinct independently 
from one another, whereas in reality strong interdepen 
dencies may exist (for example, between predators and 

prey; van der Heide et al., 2005; Witting and Loeschcke, 
1995; Witting et al., 2000). These dependencies can in 

principle be formalized, but the resulting optimization 
problem is likely to be a very difficult one. In particular, 
we doubt that dynamic programming approches such as 
ours will be effective: in order for a problem to have op 
timal substructure, a degree of independence between 
its parts is needed. Heuristic approaches such as hill 

climbing or evolutionary algorithms may be preferable. 
Note that the assumption of independence may be jus 

tified for exsitu conservation?removal and protection of 
a small number of individuals from their environment 
does not affect the survival of other taxa?but clearly 
not for in situ conservation (van der Heide et al., 2005). In 

particular, when protection is applied to a geographical 
area rather than to a species or population, survival prob 
abilities are raised simultaneously for the entire group of 
taxa that lives in that area. Interestingly, this leads quite 
naturally to a generalization of the NAP in which selec 
tion is applied to a number of potential nature reserves, 
each defining a set of changes in survival probablities. 
Leaving a more precise formulation to the Appendix, we 

may call this the Nature Reserve Problem (NRP). When 
each reserve only contributes towards the survival of a 

single taxon, the NRP reduces to the NAP. 
The problem of selecting reserves with the aim of 

preserving biodiversity is a well-established research 

topic in biodiversity conservation (e.g., Diamond, 1975; 
Higgs and Usher, 1980; Pressey et al., 1993; Dobson 
et al, 1997; Ando et al., 1998; Howard et al., 1998; 

Margules and Pressey, 2000; Rodrigues et al., 2004), and 

recently there has been a lot of interest in defining and 

solving (often heuristically) optimization problems for 
reserve selection (e.g., Margules et al., 1988; Cocks and 

Baird, 1989; Underhill, 1994; Camm et al., 1996; Church 
et al, 1996; Csuti et al., 1997; Polasky et al., 2000; Cabeza 
and Moilanen, 2001; Rodrigues and Gaston, 2002; 
?nal and Briers, 2003). Many (if not most) of the past 
formalizations would simply become special cases of 
the NRP we propose: for example, the PD-maximization 

problem of Rodrigues and Gaston (2002) could be 
seen as the 0^0/1 NRP, and the expected species 
richness maximization problem of Polasky et al. (2000) 
as the 0 -> brs NRP applied to an ultrametric star tree 

(see Appendix for the definition of the notation used 

here). The NRP would thus unify the (arguably most 

successful) approaches from economics and biology to 
the problem of biodiversity conservation, thus becoming 
a fertile meeting ground for the exchange of new ideas 
between these two disciplines. 
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Appendix 

The Algorithm for the Unrooted Case 

Here, we define a clade as any rooted subtree T of Tx consisting 
of (a) a branch a, with one of its ends being the root of T, and (b) 
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everything else in Tx that lies on the other (i.e., nonroot) side of a. This 
definition includes all the clades in the previous sense, but whereas 
before each branch identified one single clade, now for each branch 
there are two clades, each rooted by one of its ends. For example, the 
branch of length 3.0 in Figure 3 is at the "top" of both clades (A,B) and 

(C,(D,E)). Assuming that Tx is originally unrooted (the position of any 
root has no relevance for uPD), there are exactly 2(2n 

? 
3) clades in Tx. 

In particular, note that the Tx, the versions of Tx rooted in each taxon 

s, are now clades. 

Although the collection of clades is now nonhierarchical, the funda 
mental properties of a single clade have not changed: a clade is still a 
rooted tree with one branch departing from its root and with its leaves 

being a subset of the leaves of Tx. Therefore, the rooted subproblems 
defined before for all clades T and sub-budgets b < B remain well de 
fined. We are particularly interested in solving the subproblems for the 
taxon-rooted clades Tx and sub-budgets B ? cs because, as previously 
observed, some of their solutions R? provide us with solutions {s} U R? 
to the unrooted problem. 

All the rooted subproblems will again be implicitly solved by in 

crementally deriving XT(b) and iT(b) for all T and b. As we showed 

before, the calculation of these values is either straightforward or di 

rectly obtainable from the corresponding values for T's subclades. It 
is therefore necessary to tackle the clades in an order that guarantees 
that subclades are met before their "superclades." Whereas before this 

was trivially satisfied by a bottom-up traversal of all clades, now a 

slightly more complex approach is needed. First, a node in Tx is ar 

bitrarily chosen as top node of the tree (different choices of this node, 
which can be a leaf, lead to different orderings of the clades, but all 

produce the same final results). This determines a way to picture the 
tree (imagine it redrawn with the top node uppermost and all branches 

descending from there) and we can then classify clades into downward 
clades?those consisting of a branch and everything below it?and 

upward clades?the remaining ones. For example, in Figure 3 the top 
node is set to the position highlighted in pink; as a result, (A,B) is a 
downward clade and (C,(D,E)) an upward clade. 

The X and ? values are calculated for downward clades first, going 
in the usual bottom-up order. In Figure 3, where again we imagine 
that all the results are stored in a solutions table, this corresponds to 

filling the bottom half of the table, starting from the bottom row and 

going upwards. The results for the upward clades are then derived 
in a top-down fashion: more precisely, we can imagine that all the 
branches in Tx are visited in a top-down order and each time a branch 
is visited, the X and ? values for the corresponding upward clade are 

computed. In Figure 3, upward clades are visited in the following order: 
1: (C,(D,E));2: (B,(C,(D,E)));3: (A,(C,(D,E)));4: ((A,B),(D,E));5: ((A,B),C); 
6: (((A,B),C),E); 7: (((A,B),C),D), which corresponds to filling the top half 
of the solutions table from bottom to top. This ordering of the clades 

guarantees that whenever we derive solutions for a clade T containing 
subclades C and 1Z , the solutions for C and 7Z have already been 
calculated. 

Once all the X and i values have been calculated, we turn our atten 
tion to the values XTs (B 

- 
cs) for all taxa s. By definition, these are 

equal to rPD(Rs), where Rs is a solution to the rooted problem with 

budget B - cs applied to Tx, and therefore also equal to the uPD of 
the candidate solutions {s} U Rs to the unrooted problem. Clearly, the 
taxa s that maximize XTs (B 

? 
cs) are those contained in an optimal 

solution to the unrooted problem (in Figure 3, all of them except B). 
If we pick any one of these taxa s and reconstruct Rs by using the iT 
values starting from i>t?,(B 

- 
cs)?as described for the rooted case or, 

equivalently, with a call to RECONSTRUCT(T?, B - cs)?we therefore 
also obtain an optimal solution {s} U Rs to the unrooted problem. For 

example, if in Figure 3 we pick taxon C, following the iT values (indi 
cated in the figure by dotted arrows) leads to rooted solution {A,D,E} 
and therefore {A,C,D,E} is a solution to the unrooted problem. 

Note that whereas in this example {A,C,D,E} coincides with the 
set of taxa that maximize kT* (B 

- 
cs), in general the latter will not 

necessarily coincide with an optimal solution but rather with the union 
of all optimal solutions to the unrooted problem. 

This concludes the description of our algorithm for maximizing uPD 

subject to cost constraints. Again, a more concise description is given by 
the pseudocode in algorithms 1-5: a solution to the unrooted problem 
is simply obtained by a call to DOUBLE TRAVERSAL(TX). The cheapest 

optimal solution can be obtained in a similar way to that described 
above: just try to reduce the budget below B ? cs for all taxa s that 

maximize kr* (B 
? 

cs ); one of the taxa that lead to the largest reduction 

should be used as starting point for the reconstruction of the minimal 
cost wPD-optimal set of taxa. 

Pseudocode 
Problem (1) with the rooted definition for PD is solved by a call 

to bottom-up(Ty), which fills up the solutions table, followed by a 
call to RECONSTRUCT(T^, B), which returns an optimal solution (not 

necessarily of minimum cost, but this can easily be implemented). 
Problem (1) with the unrooted definition for PD is solved by a call 

to DOUBLE TRAVERSAl(Tx) (where rev(T) denotes the clade rooted in 
the same branch as T but oriented towards the opposite side). 

A simple improvement to these algorithms can be obtained by 
noting that the rows of the solutions table do not always need to be 
filled up until their last column. If a clade T is such that the total sum 
of the costs for its taxa, which we may denote by CT, is smaller than B, 
then its XT(b) and iT(b) values need only be calculated for b < Cr'- the 
solutions for b > CT are necessarily the same as the one for b = CT 
and simply consist of taking all taxa in T. Procedures CALCULATE(T) 
and RECONSTRUCT(T, b) can be simply modified accordingly. This 
results in some saving of running time, although the time complexity 
remains 0(nB2). 

Algorithm 1 BOTTOM-UP(T) 

if T contains subclades C and 1Z then 

BOTTOM-UP(?) 
BOTTOM-UP(7?) 

end if 

CALCULATE(T) 

Algorithm 2 CALCULATE(T) 

if T only consists of a terminal branch a ending in taxon s then 

cT = cs 
for b = 0, ..., cT 

- 1 do XT(b) 
= 0 

forb = cT,...,B doXT(b) 
= ta 

end if 
if T consists of an internal branch a and subclades C and 71 then 

cT = min {cc,Ciz} 
for b = 0, ..., cT 

- 1 do XT(b) = 0, iT(b) 
= 0 

for b = cTr , B do 

LT(b) = argmax{??(0 + Xn(b 
- 

i)} 
< {0.b] 

XT(b) = tn+ Xc(iT(b)) + Xn(b 
- 

tT(b)) 
if Xc(iT(b)) + X^(b 

- 
iT(b)) = 0 then 

if cc <b then iT(b) = cc else ix(b) = b ? c^ 
end if 

end for 
end if 

Algorithm 3 RECONSTRUCT(T, b) 

if T only consists of a terminal branch ending in taxon s then 
if b > cs return {s} 
iib < cs return 0 

end if 
if T contains subclades C and 1Z then 

return RECONSTRUCT^, LT(b)) U RECONSTRUCT^, b - LT(b)) 
end if 

Algorithm 4 DOUBLE TRAVERSAL(T) 

do root T in any of its leaves 

BOTTOM-UP(T) 
TOP-DOWN(rez;(T)) 
let s be a leaf of T that maximizes XTs (B 

? 
cs) 

return {s} U RECONSTRUCT(Ts, B - cs) 
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Algorithm 5TOP-DOWN(T) 

CALCULATE(T) 
if T is a subclade of two other clades T and M then 

TOP-DOWN(JF) 
TOP-DOWN(X) 

end if 

The Nature Reserve Problem 

Imagine having, in addition to the species in X, a set 1Z of potential 
reserve sites. A pair (r, s), with r eTZ and s e X, identifies the (possibly 
nonexistent) population of species s in site r. Imagine that we have 
control over the matrix (prs) of survival probabilities of the populations 
(r, s) (where by "survival" we mean existence at some specified future 

time). In analogy to the Noah's Ark Problem, these probabilities can be 

chosen from two specified values: we have two matrices of probabilities 
(ars), (brs), and prs will be set to brs or ars depending on whether site r is 
conserved or not, respectively. Note that we may have ars > brs, when 
for example species s may benefit from the human exploitation of site r. 

For each r eTZ, we also have a measure cr of the cost of conserving site 

r; i.e., of including it in a nature reserve. The objective is to construct a 

set of reserves R^TZ, with ^2reRcr 
< B, that maximizes the expected 

PD resulting from conservation of the sites in R. 

The Nature Reserve Problem, which we may write ars A- brs NRP, 
is a generalization of many problems defined in the past. In addition 
to the ones already mentioned, we note that the Budgeted Maximum 

Coverage Problem (Khuller et al., 1999) coincides with the 0 A- 0/1 
NRP applied to a star tree?where by writing 0/1 on the right of the 

arrow we mean that each survival probability brs is constrained to equal 
Oorl. 

Taxa in Figure 4 

Species abbreviations are Dma: Daubentonia madagascariensis; Mmy: 
Microcebus myoxinus; Mru: Microcebus rufus; Mra: Microcebus raveloben 

sis; Mmu: Microcebus murinus; Mco: Mirza coquereli; Atr: Allocebus tri 

chotis; Cma: Cheirogaleus major; Cme: Cheirogaleus m?dius; Pfu el: Phaner 

furcifer electromontis; Pfu pi: Phaner furcifer pallescens; Pfu pr: Phaner 

furcifer parienti; Pfu fu: Phaner furcifer furcifer; Lmu: Eepilemur musteli 

nus; Ldo: Eepilemur dorsalis; Lse: Eepilemur septentrionalis; Led: Eep 
ilemur edwardsi; Lmi: Eepilemur microdon; Lru: Eepilemur ruficaudatus; 
Lie: Eepilemur leucopus; Pta: Propithecus tattersalli; Pco: Propithecus co 

quereli; Pve ve: Propithecus verreauxi verreauxi; Pve de: Propithecus ver 

reauxi deckeni; Pve co: Propithecus verreauxi coronatus; Pdi: Propithecus 
diadema; Ppe: Propithecus perrieri; Pea: Propithecus candidus; Ped: Pro 

pithecus edwardsi; Iin: Indri indri; Ala: Avahi laniger; Aoc: At>a/n occz 

dentalis; Acl: A^a/?/ cleesei; Vva va: Varecia variegata variegata; Vva ru: 

Varecia variegata rubra; Hgr al: Hapalemur griseus alaotrensis; Hgr oc: 

Hapalemur griseus occidentalis; Hgr gr: Hapalemur griseus griseus; Hau: 

Hapalemur aureus; Hsi: Hapalemur simus; Lea: Eemur catta; Ema ma: 

Eulemur macaco macaco; Ema fl: Eulemur macaco flavifrons; Eco: Ew/e 
mwr coronatus; Eru: Eulemur rubriventer; Emo: Eulemur mongoz; Efu co: 

Eulemur fulvus collaris; Efu ac: Eulemur fulvus albocollaris; Efu ru: Ew 
/erawr fulvus rufus; Efu fu: Eulemur fulvus fulvus; Efu af: Eulemur ful 
vus albifrons; Efu sa: Eulemur fulvus sanfordi. The phylogenetic tree 
used in Figure 4a and the species' conservation costs and survival 

probabilities are available from http://www.ebi.ac.uk/goldman/ 
rats. 
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