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Abstract.?We consider a (phylogenetic) tree with n labeled leaves, the taxa, and a length for each branch in the 
tree. For any subset of k taxa, the phylogenetic diversity is defined as the sum of the branch-lengths of the minimal 
subtree connecting the taxa in the subset. We introduce two time-efficient algorithms (greedy and pruning) to com 

pute a subset of size k with maximal phylogenetic diversity in O(nlogfc) and 0[n + (n 
? 

k) logO? 
- 

k)] time, respec 
tively. The greedy algorithm is an efficient implementation of the so-called greedy strategy (Steel, 2005; Pardi and 

Goldman, 2005), whereas the pruning algorithm provides an alternative description of the same problem. Both algo 
rithms compute within seconds a subtree with maximal phylogenetic diversity for trees with 100,000 taxa or more. 

[Biodiversity conservation; Comparative genomics; Greedy algorithm; Phylogenetic diversity; Phylogenetic tree; Pruning 
algorithm.] 

Recently, Steel (2005) and Pardi and Goldman (2005) 
have shown that being greedy works if one is interested 
in selecting k taxa from a phylogenetic tree that maximize 
the phylogenetic diversity. The term phylogenetic diversity 
(PD) was coined by Faith (1992) to provide an effective 

measure of the diversity of a group of taxa. The opti 
mal PD describes the amount of diversity embraced by a 

properly chosen subset of taxa. Faith (1992) applied PD 
to place conservation priorities on different taxa, where 
the taxa to protect reflect a certain value of taxonomic di 

versity. Thus, some measurable indicator of biodiversity 
defined on different scales (taxa, group of taxa, ecosys 
tems, etc.) is assigned to the corresponding systematic 
categories. With the advent of molecular genetics, evo 

lutionary divergence on the genomic level may also serve 
this purpose (Pardi and Goldman, 2005). 

For the following, the precise nature of the measure 
of phylogenetic diversity is not relevant (cf. Humphries 
et al., 1995; Williams and Araujo, 2002, for a discussion 
on diversity measures). Phylogenetic diversity should 

simply describe the overall value of a group of taxa either 
in terms of genetic diversity, regional diversity, or social 

diversity. Moreover, it is required that these measures 
can be mapped onto a phylogenetic tree in a way that 
the branches of the tree receive non-negative weights. 

The problem is then as follows: From a tree with n taxa, 
one wants to identify k taxa that retain the maximal phy 
logenetic diversity, therefore taking into account the fact 
that due to restricted resources only a certain percent 
age of the taxa can be sustained. Steel (2005) and Pardi 
and Goldman (2005) have proven that a greedy approach 
yields the optimal set with respect to PD. The greedy 
strategy repeatedly selects the taxon that adds the most 

divergence to the already chosen set of taxa. The pro 
cedure is repeated until k taxa are found. Both proofs 
apply?directly or indirectly?the theory of weighted 

matroids and greedy algorithms (Korte et al., 1991). From 
this theory it follows that an algorithm with time com 

plexity 0(n log n) is possible. 
In the following, we will suggest a time-efficient greedy 

phylogenetic diversity algorithm (gPDA). Moreover, a dif 
ferent but easier to implement algorithm, the pruning phy 

logenetic diversity algorithm (pPDA) will be introduced. 
Both algorithms compute the optimal k set for large phy 
logenies within seconds. 

Notation 

Following Steel (2005), we call T an unrooted phylo 
genetic X-tree; that is, a tree with leaf set X of taxa and 

whose remaining interior nodes are of degree at least 
three. V denotes the set of all nodes of T and ? the col 
lection of edges or branches. ? denotes the edge-weight 
function that assigns to each edge e = (v, w), (v, w e V) 
of T a (non-negative) branch length X(v, w) > 0. 

A path V(a,b) denotes the collection of distinct nodes 
a = 

vq,v\, ..., vm+\ 
= b in a tree such that v?, u?+i are ad 

jacent; i.e., connected by an edge. The sum of the edge 
weights of all edges along the path between two nodes 
a and b denotes their distance d(a, b) in the tree. 

To describe the algorithms, it will be handy to root 
T at a node r. Then the remaining leaves are descen 
dents from r. Thus, for each node v eV the set Lmax(v) 
is well defined and denotes the descendant(s) farthest 

away from v. For the sake of clarity, we abbreviate the 
distance d[v, Lmax(v)] as dmax(v). 

For a subset W of X we consider T\ W, the induced 

phylogenetic W-tree, that connects all taxa in W accord 

ing to T. Finally, ?w assigns to each edge e of T\ W the 
sum of the X(e) values over those edges in T along the 

path that corresponds to the new edge e. The phylogenetic 
diversity of W, denoted PD(W), is then 

PD(W) = 
Y,^w(e), e 

where the summation is over all edges e in the tree T\ W 
(see Steel, 2005). 

The Time-Efficient Greedy Algorithm: gPDA 
We briefly describe the implementation of gPDA. The 

phylogenetic tree T together with its weight-function 
and the size of k define the input of the algorithm. We 
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want to determine the collection W of k taxa with maxi 

mal phylogenetic diversity. In the following, we describe 
the algorithm for trees with interior nodes of degree 
three. However, the implementation works for trees with 
finite interior node degree of at least three. gPDA splits 
in two steps. 

The initial step starts with the computation of the 

longest path in T. This can be achieved in 0(n) time 

by applying a depth-first search (DFS) (cf. Cormen et al., 
2001). The algorithm starts at an arbitrary leaf c and de 

termines the leaf a furthest away from c in T. It is easy 
to show that a is one of the endpoints of the longest path 
in T. We root the tree at a and based on this root com 

pute for all interior nodes vi the distance dmax(vi) and the 
associated set Lmax(v?). This is again a DFS procedure; 
i.e., has complexity 0(n). Figure 1A displays the result of 
this procedure for a tree with five taxa. The longest path 
in the tree has distance 20. Thus, the set W is equal to 

To extend W, we note that for each leaf c in V ? 
W, 

exactly one node v? (i = 1,..., m) in V(a, b) acts as anees 

tor; i.e., Vi is the node where the paths V(a, c) and V(a, b) 

split. Obviously, one selects the leaf that is farthest away 
from its ancestor in V(a, b).To this end, we generate an 

ordered list S with respect to dmax that contains at most 
k ? 2 nodes v\, vi,..., v^-i from the path set V(a, b). In 

S the nodes are ordered in descending order according 
to ?max; i.e., the following holds: 

dmaxiViJ 
> 

dmax(v?2) 
> > 

dmax(vik_2). 

Before generating S, we must update for each v? on 

V(a, b) the set Lmax(i;?) and dmax(v?) by choosing a leaf 
c with maximal distance to v? such that V(v\, c) does not 

have an edge in common with the path V(a, b). For each 
node Vi this update can be done in constant time. If V(a, b) 
contains more than k ? 2 nodes and S has already k ? 2 

elements, then a new node v from V(a,b)is only added to 

S if dmax(v) > dmax(vik_2). The node vik_2 is subsequently 
deleted from S and v is inserted at its appropriate po 
sition in S. This step takes O(nlogfc) time in the worst 
case. 

Figure IB displays the result of this update for the 

five-taxon tree. Here, we obtain S = (v\, v^), because 

dmax(vi) = 5 > 2 = dmax(v3). This update procedure will 

be invoked repeatedly in the following step of gPDA. 
Having defined W and a sorted list S we can enter the 

core of the algorithm, the greedy step. 
We add a leaf c from Lmax?^) to Wand delete uZl from 

S. Then we update the maximal distances and leaves 
for all nodes on the path V(v{x, c) as described for the 

path V(a ,b). No updates are necessary for interior nodes 

already in S. Figure 1C illustrates this second update for 
the example tree with W = {a,b,c} and S = {v^}. v\ and 

V2 are 
updated, 

whereas v$ remains unchanged. 

Subsequently, the elements w of the path V(v{x, c) are 

inserted into the ordered list S according to their distance 

dmax(w) if dmax(w) > 
dmax(vik_2). In the sample tree v2 is 

added and thus S = {v^, V2}. This completes the greedy 
step. The greedy step is repeated until W contains k 
taxa. 

To determine the complexity of gPDA, recall that com 

puting the longest path and identifying taxa a and b in the 
initial step consumes 0(n) time. The time requirement 
to generate and update S is more subtle to establish. Be 
cause W will eventually contain k taxa, the cardinality of 

S is never larger than k ? 2. At any time, the k ? 2 nodes 
in S are the most promising for T\ W. An insertion of 
an interior node into S requires 0(log k) time, because S 

is implemented as a red-black search tree data structure 

(e.g., Cormen et al., 2001, chap. 13). Each interior node 

is inserted in S at most once during the k ? 2 greedy 
steps. Because a bifurcating tree with n taxa has n ? 2 in 

terior nodes, generating and updating S takes 0(n log k) 
time. Therefore, the overall worst-case time complexity 
of gPDA is 0(n log k). 

An Efficient Pruning Algorithm: pPDA 

Easier to implement is the pruning phylogenetic di 

versity algorithm (pPDA), a special application of the 

?max(V3)=W 

?maX(v3)=max{8,: 

^max(V1)={^} 
^max(v1)=max{8+6,2+3} 

(V2)=?C} 
(v2)=max{l,2} 

?max(V3)={rf} 

rfmax(V3)=2 

Lmax(vt)={c} 

rfmax(v1)=3+rfmax(V2) 

09=2 

c 

?max^W 

?max(V3)=2 

?max(v1)=0 

?max(v1)= 0 

(V2)=M 
rfmax(V2)=l 

Figure 1. Example for the gPDA. dmax(vi) denotes the longest dis 

tance between u,- and its descending taxa, and Lmax(vj) denotes the set 

of taxa with distance dmax(v{) to u,-. (A) Result of the greedy strategy 
after selecting the longest path (bold lines). (B) Updating nodes on the 

longest path in the initial step. (C) Adding leaf c to W and updating 
the nodes on the partial tree. 
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so-called worst-out greedy algorithm (Korte et al., 1991). 
Here, we start with the full tree of n taxa. Based on 

the length X(v, x) of an exterior edge leading to a leaf 
x e X, we compute a sorted list S of the taxa, arranged 
in ascending order. This completes the initial step of the 

algorithm. 
In the following n ? k iterations (pruning steps), the first 

taxon S\ in the list is deleted from S. The degree of the 
node v that forms the branch (v, si) is decreased by one. 
If the new degree of v equals two, then the incident edges 
of v are joined and the branch length of the new edge is 
the sum of the lengths of the joined edges. Moreover, if 
the new edge is connected to a leaf, the branch length 
of the leaf is updated. Subsequently, the leaf is put at its 

appropriate position in S. 
After n ? k pruning steps, S contains k taxa that con 

stitute the set W with maximal phylogenetic diversity. 
It is straightforward to prove that pPDA provides trees 

with maximal phylogenetic diversity. Its optimality fol 
lows immediately from the "strong exchange" property 
of PD (Steel, 2005). This algorithm is so simple that it 
can be carried out on a piece of paper. We conclude the 
section with the discussion of its complexity. 

At each pruning step at most one taxon must be repo 
sitioned in S. We also note that the new position of 
the taxon is always further down the sorted list, be 
cause the length of an incident branch always increases. 
Thus to complete n ? k pruning steps, S needs to store 
in the worst case 2(n 

? 
k) taxa. Therefore, in the initial 

step, the selection of those taxa can be done in 0(n) 
time (e.g., Cormen et al., 2001). Then we only have to 
sort the selected taxa in 0[(n 

? 
fc)log(n 

? 
k)] time, be 

cause S is implemented as a red-black search tree (e.g., 
Cormen et al., 2001). Finally, repositioning a taxon in the 

pruning step needs at most ?[log(n 
? 

k)] steps. Thus, 
the complexity of the n ? k pruning steps amounts to 

0[(n 
? 

k) log(n 
? 

k)]. This results in an overall complex 
ity of pPDA o?O[n + (n- k) log(n 

- 
k)]. 

Run Time Analysis 

We conducted computer simulations to test the wall 
clock computing time of gPDA and pPDA. Simulations 

were performed on a 2-GHz AMD Opteron 246 with 2 

GByte RAM. Both algorithms were so fast that only for 

huge trees with more than 100,000 taxa was a substan 
tial difference in the performance observed. Therefore, 

we will only compare the results for n = 100,000 and 

1,000,000 taxa, respectively. The computing times (in sec 

onds) in Figure 2 are based on average times from 100 
random trees generated under the Yule-Harding model 

(Harding, 1971) for each combination of the pair (n, k). 
The branch lengths are randomly drawn from the inter 
val (0,1). The size k of W was varied from 5% to 95% of 
the n taxa in the tree. 

For the n = 105 taxa tree all runs of both algorithms 
needed less than one second to compute a subtree with 

maximal PD. In our simulations, gPDA never consumed 
more than 8 s to achieve the subset of maximal phy 

logenetic diversity in the 1,000,000-taxa trees, whereas 

the longest run for the 1,000,000-taxa tree with pPDA 
amounts to 17 s. It should be noted that an implemen 
tation of the na?ve version of the greedy algorithm (as 
derived from Steel, 2005) needs more than 30 min for 
n = 105 taxa (data not shown). In our simulations, gPDA 
is faster than pPDA if k < 70% of the taxa; otherwise, 

pPDA outperforms gPDA. 
Typical applications do not deal with millions of taxa. 

But recently, Lewis and Lewis (2006) calculated PD for 
thousands of small trees of 150 taxa. We applied our al 

gorithms to 10,000 trees generated from their data using 
MrBayes (Ronquist and Huelsenbeck, 2003). Both algo 

rithms took less than 1.5 s to extract optimal PD sub 
trees for all generated trees. Hence gPDA and pPDA may 
serve as subroutines in such applications. In addition, 
this example resulted in a different discriminative point 
oik = 40% at which pPDA starts outperforming gPDA. 
Thus, the superiority of one algorithm over the other 

crucially depends on the tree shape. 

A 

G 

O 20 40 60 80 100 

Percentage of preserved taxa 

o 0> 

S 
? 

0 20 40 60 80 100 

Percentage of preserved taxa 

FIGURE 2. Comparison of computing times of gPDA and pPDA. 
Each point represents the average run time from 100 runs for n =100,000 

(A) and n = 1,000,000 taxa (B), respectively. Subset sizes ranging from 

k = 5%-n,...,95%-n. 
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Discussion 

We have presented two versions of the greedy ap 
proach, gPDA and pPDA. They provide an efficient im 

plementation to compute a subtree of given size k with 
maximal phylogenetic diversity. Thus, gPDA and pPDA 
may serve as convenient tools to compute subtrees for 
different sizes of k. The gain in speed is due to the trick 
that S does not contain all the interior nodes or taxa. 

Therefore both algorithms exhibit a worst-case perfor 
mance less than 0(nlogn). Our simulations indicated 

that the tree shape influences the wall-clock computing 
time and the efficiency of the algorithms differently. A 

comprehensive study of all factors affecting computing 
time is beyond the scope of this study. 

Steel (2005) proposed an extension of the PD score 
to accommodate the need to incorporate different mea 
sures of diversity, in which each taxon receives a weight 
depicting its estimated importance. This can be easily 
integrated into the algorithm by increasing the termi 

nal branches with the weight of the corresponding taxa 

(Pardi and Goldman, 2005). 
Pardi and Goldman also suggested another approach, 

namely to start with a user-defined initial set W. This 

permits the extension of W to a maximally divergent 
set starting with a non-optimal seed W. This application 

may be handy in comparative genomics where one has 

already some species sequenced and must decide which 

species to be sequenced next. We included this option in 
both algorithms. 

Although the determination of one subset W of X with 
maximal PD is computationally efficient, it would be cer 

tainly worthwhile to explore the possibility of different 
sets W[, Wir. with the same maximal PD. The num 

ber of such sets can theoretically increase dramatically. 
In view of this combinatorial explosion, the question of 

how to measure phylogenetic diversity becomes impor 
tant. For the algorithms, the precise nature of this mea 
sure is irrelevant as long as it can be mapped on the tree 

relating the taxa under consideration. Combining differ 
ent measures of diversity may lead to more discrimina 
tive branch lengths and therefore reduce the hazard of 

multiple optimal sets. 
In this context, confining the measure to genetic dis 

tances between the taxa may be helpful (Pardi and Gold 

man, 2005). However, different problems then arise. 

Presently, it is not at all clear how to adjust the algo 
rithms for conflicting trees derived from the same set of 
taxa. It is well known that different regions of the genome 

provide trees with drastically different phylogenetic di 
versities due to violations of the molecular clock or due 
to varying rates of molecular evolution (Graur and Li, 
2000). Sometimes trees derived from different regions 

may be different due to ancestral polymorphisms (Nei, 
1987). The artificial example in Figure 3 illustrates the 

problem. For k = 2, we compute W[ = {I, 3}, 1A? = {1,4} 
for trees 7? and T2, respectively. If we compute the pair 

wise distance between taxa as the sum of the pairwise 
distances in both trees, then the set W$. = {3,4} displays 
the largest phylogenetic diversity. We also obtain W3, if 

the tree is selected that provides the best least square fit 
to the distance sum (cf. Felsenstein, 2004). The crucial 

point is the fact that W$ is neither maximal in T\ nor in 

T2. Thus, if we construct trees from different genomic 
regions and combine them naively, then the resulting 
tree and its derived optimal subtree with maximal di 

versity may not be the representative of the true under 

lying diversity. One way to address this would be to 

assign different weights to the different trees and then 
maximize the weighted average of the PDs calculated 
for different trees. However, more sophisticated algo 
rithms may be required to cope adequately with genetic 

PD. 

A El T EL <r 

sr 
^ 

in 
Figure 3. For the taxa 1, 2, 3, and 4, two different gene trees are 

observed that lead to two different PD2 sets {1,3} and {1,4), respec 

tively (A). In contrast, the resulting split graph generated by the sum 

of pairwise distances between taxa in % and T2 (B) and the least 

squares, fit tree of the two gene trees (C) have the PD2 set {3,4}. 
Bold lines visualize the subgraphs formed by the respective PD2 
sets. 
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