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Abstract.?The Noah's Ark Problem (NAP) is a comprehensive cost-effectiveness methodology for biodiversity conservation 

that was introduced by Weitzman (1998) and utilizes the phylogenetic tree containing the taxa of interest to assess biodiversity. 
Given a set of taxa, each of which has a particular survival probability that can be increased at some cost, the NAP seeks 

to allocate limited funds to conserving these taxa so that the future expected biodiversity is maximized. Finding optimal 
solutions using this framework is a computationally difficult problem to which a simple and efficient "greedy" algorithm 
has been proposed in the literature and applied to conservation problems. We show that, although algorithms of this type 
cannot produce optimal solutions for the general NAP, there are two restricted scenarios of the NAP for which a greedy 

algorithm is guaranteed to produce optimal solutions. The first scenario requires the taxa to have equal conservation cost; 
the second scenario requires an ultrametric tree. The NAP assumes a linear relationship between the funding allocated to 

conservation of a taxon and the increased survival probability of that taxon. This relationship is briefly investigated and 
one variation is suggested that can also be solved using a greedy algorithm. [Biodiversity conservation; greedy algorithm; 

Noah's Ark Problem; phylogenetic diversity] 

Biodiversity conservation requires a methodology for 

prioritizing the taxa to conserve, given limited resources. 

Many conservation approaches have simply aimed to 
conserve as many taxa as possible (Gaston 1996); how 

ever, a more appropriate method should take taxon dis 
tinctiveness into account (for review, see Crozier, 1997) 
and aim to minimize the future loss of biodiversity. Var 
ious simple indices have been developed that give an 

indication of the distinctiveness of a taxon or of its im 

portance to the future conservation of biodiversity. These 
indices are based on the phylogenetic tree containing the 
taxa of interest, notable examples include Vane-Wright 
et al. (1991), May (1990), Faith (1992), Haake et al. (2005), 
and Redding and Mooers (2006). A limitation of most 
such indices is that they do not consider the differential 
costs involved in conserving different taxa or the dif 
ferent survival probabilities of different taxa. However, 

Witting and Loeschcke (1995) (see also, Witting et al., 
2000) linked the phylogenetic diversity (PD) measure 

(Faith 1992) to extinction probabilities to obtain a method 
for minimizing the future loss of biodiversity. 

Weitzman (1998) proposed the "Noah's Ark Problem" 

(NAP), a framework based on PD that incorporates costs 
and probabilities and has seen some practical application 
including conservation of cattle breeds (Simianer 2003; 

Reist-Marti et al., 2006). In the NAP each taxon has a 

survival probability that can be increased at some cost. 
The objective is to allocate a limited budget to the taxa 

such that the future expected biodiversity (as obtained 
from the phylogenetic tree) is maximized. Unfortunately, 
obtaining this optimal budget allocation is a complex 
problem and it may be necessary to consider a large pro 

portion of the possible subsets of the N taxa that can be 

conserved. The number of such subsets grows at rate 2N, 

consequently for problems involving more than a few 
dozen taxa, it is not computationally feasible to consider 
all subsets and an efficient algorithm is required for ob 

taining optimal solutions to the NAP. 

Steel (2005) considered a simplified version of the NAP 
in which taxa only survive if they are conserved and all 
taxa cost the same to conserve. Steel (2005) showed that 

optimal solutions to this problem can be produced using 
a simple and efficient greedy algorithm. In this paper 

we investigate two more realistic variations of the NAP 
that allow for variable conservation costs and uncertain 
survival of the taxa. These variations are also shown to 
be solvable in polynomial time using a greedy algorithm. 

Suggestions have been made in the literature that any 
NAP for which the associated tree satisfies a molecular 
clock can be solved using a greedy algorithm (Simianer, 
2003). Several aspects of the NAP that prevent the greedy 
algorithm from producing optimal solutions in all cases 
are examined. These examples (Figures 2 and 5) illustrate 
that a greedy algorithm is not, in general, guaranteed to 

produce optimal solutions. 

Phylogenetic Diversity 

The NAP uses phylogenetic diversity (PD; Faith, 1992) 
as a measure of biodiversity. PD has been used in a wide 

variety of applications including biodiversity conserva 

tion (e.g., Crozier et al., 2005; Lewis and Lewis, 2005; 
Mooers et al., 2005; Soutullo et al, 2005; and Faith and 

Williams, 2006) and prioritizing taxa for genomic se 

quencing (Pardi and Goldman, 2005). PD is calculated 
from the phylogenetic tree T, the leaves of which cor 

respond to the set of taxa, X, under study. For a sub 
set Y of X the PD is the sum of the branch lengths 
of the phylogenetic tree containing taxa in Y and the 

root, an example is given in Figure 1. Note that a vari 
ant of PD has been used elsewhere where the root is 
not necessarily included. The standard usage appears 
to include the root (Faith, 1992) (see Faith and Baker, 
2006, in response to Crozier et al., 2005, for further 

discussion). 
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w and y 
become 

extinct 

FIGURE 1. When taxa w and y in the tree on the left become extinct, the edges that are considered to have been preserved are indicated by 
the solid lines. The phylogenetic diversity (PD) is calculated as the sum of the preserved edge lengths. The edge indicated by 

* 
is considered 

further in the text. 

If each taxon remains extant until some given future 
time with probability a?, then it is possible to calculate 
the expected PD at that time. A particular branch length 
is included in the PD score if at least one of the children 
of that edge remains extant. For example, the edge indi 
cated by an * in Figure 1 will be preserved as long as one 
of its children (taxa y or z) remains extant. If these taxa 
have a survival probability of 0.9, the probability that at 
least one will remain extant (and the edge 

* 
is preserved) 

is simply 1 ? 
(1 

- 
0.9)2 

= .99. Denoting the children of a 

particular edge, /, by Q the expected PD can in general 
be expressed as: 

E(PD):=^?z(l-n(l-^))^ 
(1) 

where ?z is the length of edge /, and the summation is 
over all edges of T. Depending on the data from which a 
tree is derived, the branch lengths may have different in 

terpretations. Branch lengths may correspond to an evo 

lutionary time scale (i.e., the number of millions of years 
between speciation events), or to genetic distance, or to 
the extent of morphological differences, or perhaps some 
combination of these (or other) measures of evolutionary 
distance. Throughout this paper no particular interpre 
tation is assumed, so as to allow the greatest degree of 

generality for applications; in particular, unless we state 
so explicitly, we do not assume that the tree is ultrametric 

(recall that an ultrametric tree is one for which the distance 
from the root to any leaf is the same, as would occur for 

genetic distance under a molecular clock, or under an 

evolutionary time-scale). 

The Noah's Ark Problem 

A variation of the Noah's Ark Problem was described 
in Weitzman (1992); however, this used a measure of dis 

similarity instead of PD (see Faith, 2003, for a discus 

sion); the NAP as published in Weitzman (1998) finally 

combined PD, extinction probabilities, and conservation 
costs. 

In the NAP framework each taxon, ;', has some proba 
bility, a j , of remaining extant; however, if some conserva 
tion intervention of cost Cj is applied to this taxon, then 
this survival probability can be increased from aj to t'y. 

Given a budgetary constraint, B, the problem is to find 
the set of taxa to conserve, S, that maximizes the future 

expected phylogenetic diversity, denoted by E(PD|S). 
The quantity E(PD|S) is calculated in a similar fashion 
to Equation 1, except that the survival probabilities of the 
conserved taxa (those taxa in S) need to be considered 

separately: 

E(PD|S) = 
J>p(i|S) i 

i ^ keC,-S leQnS 
' 

where p(i \ S) denotes the probability that one of the taxa 
in d will remain extant given that the set of taxa S is 

being conserved. 

The formulation of the NAP used throughout this pa 
per is essentially equivalent to that given in Weitzman 

(1998) but is expressed differently for convenience: 

Given an edge-weighted phylogenetic tree, and 
VALUES 

(aj,bj,Cj) FOR EACH TAXON /', MAXIMIZE 

E(PD|S) OVER ALL SUBSETS S OF TAXA, SUBJECT TO THE 
CONSTRAINT: 

J2jeScj 
- B' 

The constraint ensures that the cost of conserving the 
taxa in S does not exceed the budget (B). 

The original formulation of the NAP included an addi 
tional term in the objective function that permitted each 
taxon to have an intrinsic value (utility) unrelated to its 
contribution to PD (e.g., the value of tourism for a species 
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of whale). This additional value has not been made ex 

plicit here, as it is easy to show that including such a 

value for a particular taxon is equivalent to adding it to 

the length of the pendant edge for that taxon. 

The original formulation of the NAP also allowed 
taxa to be partially protected, so that resources could 

be spread more thinly across multiple taxa instead of 

conserving a smaller subset of taxa to the maximum ex 

tent possible. Weitzman (1998) assumed that if a taxon is 

partially conserved, the survival probability increase for 
that taxon is directly proportional to the proportion of the 

funding that taxon received. If q? is spent on conserving 
taxon; (0 <qj< Cj), the new survival probability, gj(qj), 
for taxon j is: 

gj(qj)=q-1(bj-aj) 
+ aj. (3) 

ci 

Weitzman (1998) showed that under this assumption, the 

solutions to the NAP are extreme?the optimal solution 
will always allocate the maximum amount (qj 

= 
Cj) to 

a few taxa instead of partially conserving (0 < qj < 
Cj) 

a greater number of taxa, with the possible exception of 

the last taxon conserved, which may only be partially 
conserved due to budgetary constraints. Consequently, 
the problem of deciding how much funding to allocate 

to the conservation of each taxon becomes a problem of 

deciding which taxa to conserve. Throughout this paper 
we will adopt the convention that the last taxon selected 

for conservation will be partially conserved such that the 

full conservation budget is utilized. 
The benefit of Equation (3) is further demonstrable by 

considering a star tree (each taxon is directly descendant 
from the root) where the taxa may have different costs. 

If a ; =0 and b} 
= 1 for all taxa j and each taxon can be 

either fully conserved or not at all: 

[1, nj>Cj', 

then the problem is equivalent to the "knapsack prob 
lem," which is well known to be NP-complete (Cormen, 

2001). However, if gj(qj) is given by Equation (3) in 

stead, the problem is equivalent to the "fractional knap 
sack" problem, which is solvable by a greedy algorithm 
(Cormen et al., 2002). 

Scenario 1: Constant Conservation Costs 
and Variable Survival Probabilities 

Steel (2005) considered a variant of the NAP where the 

conservation cost is the same for all taxa (c? 
= 

c) and taxa 

only survive if they are conserved (uj 
= 0, b} 

= 1). That 

paper established that all optimal solutions for this prob 
lem can be produced by a greedy algorithm that builds 

up a set by sequentially adding the taxon that produces 
the greatest increases in PD. In Hartmann and Steel (2006) 
this result was extended to allow non-zero survival prob 
abilities in the absence of conservation (a? ̂  0). Here we 

provide a further extension which permits all survival 
rates to be non-zero/non-unity. 

Theorem 1. For the Noah's Ark problem with equal conser 

vation costs optimal solutions can be produced by a greedy 
algorithm if the following condition is met by the survival 

probabilities: 

for some constant k (with 0 < k < 1). The algorithm begins 
with an empty set S and sequentially adds the taxon, j, which 

maximizes E(PD|S U ;') until S is at the maximum size per 
mitted by the budgetary constraint. 

Note that, if conservation is completely efficient (bj 
= 

1), the survival probabilities in the absence of conserva 

tion (aj) 
are free to vary; otherwise, this condition states 

that the extinction probability must be reduced by the 
same proportion for each taxon when it is conserved 

[l-bj=K(l-aj)]. 

Proof. The proof proceeds in a similar fashion to Steel 

(2005) by establishing a strong exchange property: 

namely that for any two subsets, Y and Z, of X with 

\Y\ < \Z\ there exists some taxon z e Z such that: 

E(PD|Z 
- 

{z}) 
- 

E(PD|Z) + E(PD|Y U {z}) 

-E(PD|Y)>0. (5) 

This means that for any two subsets of X, the larger sub 
set contains some taxon (z) that would contribute more 

to the expected PD value of the smaller subset than it 

adds to that of the larger one. 
Denote the set of edges on the path from z to the root 

by R, and notice that each of the expected PD terms in 

Equation (5) can be split into a sum over the edges in R, 
and a sum over the edges not in R. The significance of this 
observation is that the probability that edges not in R are 

spanned remains unchanged as z is removed from Z or 

added to Y. Denoting the left-hand side of Equation (5) 

by APD we have: 

?eR j$R 

where 

Ap(i) := p(i\Z- {z}) 
- 

p(i|Z) + p(Y U {2}) 
- 

p(i|Y), 

then for; ^ R we have Ap(;) 
= 0 because the probability 

of an edge not in R being spanned is independent of the 

presence of taxon z, hence: 

APD = 
^?/Ap(/). 

ieR 
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A sufficient condition for satisfying the strong ex 

change property (Equation (5)) is therefore that Ap(i) 
> 0 

for each edge / on the path from taxon z to the root. The 

following results follow from the definition of p(i | Z): 

p(i\Z-{z})-p(i\Z) 
= (az~bz) J] (l-am) H (1-bt) 

meCj-Z ZeQnZ-{z} 

p(i\YU{z})-p(i\Y) 
= (bz-az) H (l-am) H (1-bt). 

meCi~Y-{z} leC?nY 

Combining these gives an identity for Ap(i) which can 

be further simplified using Equation (4): 

Ap(i) = 
n i1-??) n q-w 

med-Z lednZ-{z) 

n q-**) n v-w 
meC?-Y-{z} leQnY 

(az 
- 

bz) 

-(^c^-1-K^Y%z-bz)l[(l-am) 
meCi 

Noting that az 
? 

bz is negative, a sufficient condition for 

insuring that Ap(i) 
> 0 is /c^02!-1 - K\c^y\ < 0, which 

(because 0 < k < 1) is equivalent to 

IQnY| < \dnz\-i. (6) 

This condition simply states that the number of ele 
ments in Y that span edge i is strictly less than the num 

ber of elements in Z that span that edge. Next we show 
that for any two sets Y and Z with \Y\ < | Z|, it is possible 
to find a taxon z for which this last property holds for 
each edge i on the path from z to the root. 

Starting at the root, one of the edges adjacent to the 
root must satisfy Equation (6) because \Y\ < \Z\ (if Equa 
tion (6) were not satisfied this would imply \Y\ > \Z\), 
call this edge m. Similarly, one of the edges below m 

must satisfy Equation (6) because we have \Cm n Y\ < 

\Cm n Z\ 
? 

1, pick this edge, call it m, and continue this 

procedure until one arrives at an exterior 
edge. 

The con 

dition Ap(i) 
> 0 is therefore met on every edge, from 

the taxon adjacent to this exterior edge through to the 

root, consequently the strong exchange property (Equa 
tion (5)) holds. 

Let Y be an optimal solution if m taxa are to be con 

served and Z an optimal solution if m + 1 taxa are to 
be conserved. Applying the strong exchange property 
(Equation (5)) to Y and Z shows the existence of a taxon 
z such that Y U {z} is an optimal solution for m + 1 taxa 
and Z - 

{z} is an optimal solution for m taxa. 
Theorem 1 follows easily by standard arguments from 

"greedoid" theory (Korte et al., 1991). Specifically, the 

above observation shows that any solution for m + 1 taxa 
must be obtained from a solution for m taxa by adding a 

single taxon which maximizes the increase in E(P D| Y). 

The Necessity of Equation (4) 

Any problem for which the greedy algorithm is op 
timal must satisfy the substructure property (Cormen 
et al., 2002). This property states that an optimal solution, 
Y, of a given size must be contained within an optimal 
solution of each larger size. The condition imposed in 
the previous section (Equation (4)) ensures that the sub 
structure property holds for the optimization problem. 

Here we provide a simple example to show that this 
substructure property (and thereby the greedy algo 
rithm) can fail when the condition imposed by Equa 
tion (4) in Theorem 1 is violated. 

In Figure 2 the optimal subset of size 1 is {x}. The addi 
tional contribution to E (P D) made by the pendant edge 
of x when it is conserved is smaller than that from the 

pendant edges of y or z (were they to be conserved). The 

optimality of x is entirely due to its conservation ensur 

ing that the interior edge of length 2 is spanned. 
When two taxa are conserved, the probability increase 

that x provides for the interior edge of length 2 is re 

duced such that the smaller increase in this probability 
that y and z provide, coupled with the greater contribu 
tion from their pendant edges, makes x a less valuable 
taxon to conserve. The optimal subset of size 2 is there 
fore {y, z} (see Figure 2), the substructure property is vio 
lated (which was possible as the condition in the previous 
section [Equation (4)] was not satisfied) and the greedy 
algorithm cannot produce the optimal solution. 

Nonlinear Conservation Expenditure and Taxon Survival 

Relationship 

Recall that the expenditure-survival relationship 

gj(qj) gives the probability that a taxon, ;', will remain 
extant given that qj is spent on its conservation. Sce 
nario 1 and Scenario 2 (in the following section) assume 
a linear relationship for gj(qj) (Equation (3)). This linear 

relationship ensures that solutions are extreme?all taxa 
with one possible exception are fully conserved or not at 
all?which in turn simplifies the NAP problem from one 

of deciding the amount to spend on the conservation of 

0.01 

Subset (5) 1 E(PD\S) 
- 

E(P?>|0) 
{w} 
{x} 

{y},{*} 

{w,x} 

{y',*} 

{x,y}, {x,z} 

0.602 

1.068 

1.055 

1.657 

1.670 

1.745 

1.672 

FIGURE 2. A NAP that does not satisfy condition 4 and violates 

the substructure property. The optimal subset of size 1 is {x} and the 

optimal subset of size 2 is {y, z}. Parameter values are a w = 0.6; ax = 0.5; 

ay= az = 0.25; bw 
= 0.8; bx = 1; and by 

= bz = .85. 
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each taxon to one of selecting the optimal set of taxa to 
conserve. 

Simianer et al. (2003) questioned the validity of the 
linear relationship and applied the NAP using various 
alternatives to Equation (3). Further examples of differ 
ent relationships can be found in Johst et al. (2002) and 
Lamberson et al. (1992). 

For convenience, problems with gj(qj) not of the type 

given in Equation (3) will be referred to as General 
ized Noah's Ark Problems (g-NAPs). The relationships 

gj(qj) within a g-NAP are generally not parameterized 
by aj, bj, and Cj and cannot be assumed to have 
extreme solutions. However, as we will show, there 
is one family of g-NAPs that can be solved using a 

greedy algorithm, namely g-NAPs, where gj(qj) has the 
form: 

gj(qj) 
= 1 - ki?(l 

- 
aj) with 0 < k < 1, 

can be transformed to a NAP (with gj(qj) 
as in Equa 

tion (3)) using the method detailed in Appendix 1; the 

resulting NAP is of the type described in Scenario 1. Con 

sequently such problems can be solved using a greedy 
algorithm. 

This formulation of gj(qj) corresponds to the situa 
tion where each budgetary unit allocated to conserv 

ing a taxon produces progressively smaller increases in 

that taxon's survival probability as dictated by the above 

equation. Note that survival of a taxon cannot be guar 
anteed regardless of the funding allocated to its conser 

vation (unless of course aj 
= 

1). 
Other g-NAPs that satisfy certain conditions (dis 

cussed in Appendix 1) can be transformed to NAPs. The 

resulting NAPs will generally not fall into Scenario 1 and 

may therefore violate the substructure property, hence 

they may not be solvable using a greedy algorithm. 

Scenario 2: Variable Conservation Costs 
and an Ultrametric Tree 

In this section a variation of the NAP is considered 
that allows variable conservations costs and for which 

the greedy algorithm can produce an optimal solution 

(W). 
Denote the expected contribution a particular taxon, 

;, makes to the expected PD of a set of taxa, W, by avv(; ). 
That is, if ; is in W, crw(j) is the PD that W would lose if 

; were removed, if ; is not in W it is the PD that W can 

gain from the addition of ;': 

aw(j) := E(PD| W U {;'}) 
- 

E(PD| W - 
{;}). 

The cost-benefit of adding a taxon to a subset is given by 
rw(j ) 

= 
crw(j)/c(j), this is the contribution ; makes to the 

PD per unit of cost. The overall cost benefit of a particu 
lar subset of taxa W is Rw = 

E(PD| W)/ E;Gwc0')' 
and 

optimal solutions to the NAP will maximize Rw sub 

ject to the total cost equaling the conservation budget 
(B). 

Theorem 2. A greedy algorithm produces optimal solutions 

for any Noah's Ark Problem with variable conservation costs 

provided the tree is ultrametric and conservation increases the 
survival probability of each taxon from certain extinction (a j 

= 

0) to certain survival (bj 
= 

1). 
The greedy algorithm begins with W = 0 and continues to 

add the taxon with the highest value ofrw(i) to W until the 
cost of conserving the taxa in W exceeds the budget. The last 
taxon added should be partially conserved to bring the total 
cost to the budget. 

This theorem is a variation of that stated, without 
reference or proof, in Weitzman (1992: 374) and Weitz 

man (1995: 31). The difference between the proposed 
algorithms is that the greedy algorithm presented here 
builds up a set of taxa to conserve by adding one taxon 
at a time, whereas that proposed by Weitzman begins 

with the full set of taxa and removes one taxon at a 

time. The requirement in Weitzman (1992) that the dis 

similarity measure be ultrametric and the requirement 
in Weitzman (1995) of a bead model of evolutionary 

branching are both equivalent to requiring the tree to 
be ultrametric. Weitzman's theorem claims that the 

greedy algorithm will produce optimal results for an 

ultrametric tree and it allows for intrinsic values of the 
conserved taxa (as discussed previously). However, it 
is the modified tree where the intrinsic values of the 
taxa have been added to the pendant edges that must be 

ultrametric. 

Proof. Theorem 2 cannot be proven in the same manner as 

Theorem 1 because the strong exchange property (Equa 
tion (5)) does not hold (it is a straightforward matter to 
construct a counterexample). Instead, for this scenario 

we establish two claims: (i) all subsets not produced by 
the greedy algorithm are suboptimal and (ii) all subsets 

produced by the greedy algorithm are optimal. 

Claim (i). Suppose that W is an optimal subset that can 

not be produced by the greedy algorithm. Consider con 

structing W by beginning with an empty set and adding 
the elements in W one at a time such that a greedy choice 
is made whenever possible. Because W cannot be pro 

duced by a greedy algorithm, there will be some point 
in this sequence where a taxon, h, is added instead of a 

greedy choice, denote the subset to which h is added by 
Y (Y c W), and a taxon that the greedy algorithm would 
have added by g (g e W, g ? Y). 

Consider the taxon in W that is the closest to g, without 
loss of generality the situation is as depicted in Figure 3. 

Denote this taxon by ; (this taxon may not be unique, 
in this case the choice of ; is arbitrary). It is necessary to 

consider two cases: j <e W ? Y and j ? W ?Y. 
If ; e W ?Y, g was a greedy choice at a time where ; 

could have been added to the subset Y and because the 

greedy choice was not made we have: 

rrig) > Mj), 
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a or a' 

Figure 3. The general situation when two taxa, g and j, that share 
a common edge not in T\Y are added to T|W. The tree has been as 

sumed to be ultrametric. The root of the depicted tree corresponds to 
an interior node of T\Y or T\ W when the length of the root edge is a 

or a', respectively. 

that is, 

a + y a + y - > -(using the branch lengths in Figure 3) 
Cg Cj 

cg<Cj. (7) 

The cost benefits of g and ; relative to the final subset 

(W) are: 

rw(g) 
= (a + y)/cg, 

rw(j) 
= (<*' +Y)/Cj 

From Equation (7) we have cg < Cj, hence rw(g) > ^w(j) 
The cost benefit of g exceeds that of ;'; diverting some 

funding from taxon ; to g will increase the overall cost 

benefit, hence W is not an optimal subset. 
If ; ^ W ? Y there is no taxon in W ? Y that can re 

duce the cost benefit of g, hence the cost benefit of g still 
exceeds that of h and diverting funding from h to g will 

again increase the overall cost benefit, hence W is not 
an optimal subset. Hence, all optimal solutions must be 

produced by a greedy algorithm. 

Claim (ii). Because an optimal solution exists (but may 
not be unique) at least one solution produced by the 

greedy algorithm must be optimal. To show that all so 
lutions are in fact optimal it suffices to examine what 

happens when the greedy algorithm has to select from 
several greedy choices to add to a subset Y. Consider 
the case where there are two taxa, ; and k with equal 
cost benefit. This can occur in two ways as depicted in 

Figure 4. 

Case 1 

The taxa with equal cost benefit attach to different in 
ternal nodes of T\ Y. In this case, addition of either taxa 

does not effect the cost benefit of the other taxon; regard 
less of which taxon is conserved first the other will be 
conserved next at the same cost benefit. 

j k j m k 

FIGURE 4. The two ways in which taxa with the same cost benefit 

may attach to an existing tree, T\ Y. Note that in both cases there may 
be any number of other taxa not in Y that attach to the edges depicted 
(such as the taxon ni). 

Case! 

The taxa with equal cost benefit attach to the same 
internal node of T\Y. This situation is more complex, 
addition of the first taxon reduces the cost benefit of the 
second taxon consequently other taxa may have a higher 
cost benefit and be conserved before the second taxon. 

As ; and k have the same cost benefit, the fact that the 
tree is ultrametric dictates that ; and k have the same cost. 
It is therefore apparent that both the remaining budget 
and the cost benefit of the unconserved taxa are inde 

pendent of which of ; and k is conserved first. Only the 
cost benefits of those taxa that are incident with the pen 
dant edge of ; or k in T\ Y U {;", k] (for example taxon m 
in Figure 4) are dependent on which of ; and k is first 
conserved. However, from the same argument used to 

produce Equation (7), all of these taxa will have a higher 
cost than ; and k, subsequently they will not be con 
served until both ; and k have been conserved (at which 

point it becomes irrelevant which of these taxa was con 
served first). 

The extension to more than two taxa with the same cost 

benefit, possibly with combinations of these two scenar 
ios is straightforward. 

Beyond Ultrametric Trees 

When applied to a tree that is not ultrametric, the 

greedy algorithm is no longer guaranteed to provide the 

optimal solution. In particular when new taxa are added 

by the greedy algorithm, it is possible for taxa that have 
been added previously to have their cost benefit reduced 
below that of some taxon not selected thus far?this prob 
lem may not exhibit the substructure property. This is 
illustrated in Figure 5. The optimal subset of size 1 is [b] 

with a cost benefit of 1, whereas the optimal subset of 
size two is {a, c} with a cost benefit of 12/17. 

Note that this problem is equivalent to a problem 
where the pendant edges of y and z have zero length 
and x, y, and z have intrinsic values of 0, 0.1, and 1, 

respectively. The resulting tree is ultrametric and thus 

by the theorem proposed in Weitzman (1992: 374) and 
Weitzman (1995: 31) should be solveable by their greedy 

algorithm. However, because the optimal solutions do 
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0.1 

Subset (S) 
{x} 

W 
{y} 

{y,z} 
{x,y} 

Overall Cost Benefit (Ws 
0.5 

0.89 

1.1 

0.65 

0.70 

0.71 

Figure 5. A tree that is not ultrametric can lead to a violation of 

the substructure property. The optimal subset of size 1 is {y} and the 

optimal subset of size 2 is {x, z}. Parameter values are cx = 2, cy 
= 1, 

cz ?1\, 
and edge lengths as indicated. 

not satisfy the substructure property, they cannot be pro 
duced by any greedy algorithm. If intrinsic values are 

being considered, the tree formed when these values are 
added to the pendant edges must be ultrametric for a 

greedy algorithm to produce optimal solutions. 

Remarks 

Simple greedy algorithms were outlined for two spe 
cial cases of the Noah's Ark Problem (NAP). These spe 
cial cases are more realistic than that considered by Steel 

(2005) for which it is known that a greedy algorithm 
exists. Using these algorithms optimal solutions for prac 
tical problems that fall within these scenarios can be com 

puted efficiently. 
Simianer (2003: 384) has suggested (without proof) 

that a greedy algorithm will produce optimal solutions 
for a family of problems equivalent to the Generalized 

Noah's Ark Problem (g-NAP) described here, provided 
the tree satisfies a molecular clock. This family of prob 
lems includes the NAP proposed by Weitzman (1998) for 

which we have illustrated several cases where a greedy 
algorithm cannot produce optimal solutions (Figures 2 
and 5). Hence we have shown that greedy algorithms are 

not, in general, guaranteed to produce optimal solutions 
for NAPs or g-NAPs. Caution is advised when apply 
ing a greedy algorithm to a problem not of the types 
described in Scenarios 1 and 2?the solutions produced 

may not be optimal. 
Reist-Marti et al. (2006) describe a two-step algorithm 

for solving g-NAPs; they note that this algorithm is not 

guaranteed to produce the optimal solution. Algorithms 
such as this may prove useful, particularly for more com 

plicated variations of the NAP. It would also be of interest 
to determine how close the solutions produced by such 

algorithms are to the global optimal. 
Further extensions to the NAP to improve realism have 

been suggested in the literature. Simianer et al. (2003) 

suggested using more realistic relationships between the 

expenditure 
on 

conserving 
a taxon and that taxon's sur 

vival probability. A family of relationships that can be 
solved using the greedy algorithm has been presented 

here, it is expected that for most other relationships no 

guarantee can be made that the greedy algorithm will 

produce optimal solutions, van der Heide et al. (2005) 

suggested that interdependent survival probabilities de 
rived from ecologically relationships should also be con 

sidered; if, for example, a species of prey becomes extinct, 
then the predators of that species may be more likely to 

become extinct. This has not been considered here but is 

worthy of further investigation. 
Finally, a variation on the NAP is to select a subset S 

of taxa to maximize the probability P(P D\ S > /) that the 

evolutionary heritage exceeds a value / given that the 

species in S are conserved and subject to the usual bud 

get constraint 
^yes c; - ^ This problem may be as rele 

vant for biodiversity conservation as the standard NAP, 

though it is not clear if it would be as mathematically 
tractable to analyze. 
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Appendix 1 

Nonlinear Conservation Expenditure and Taxon 

Survival Relationship 

We describe a technique by which Generalized Noah's Ark Problems 

(g-NAPs) that satisfy certain conditions are transformed to equivalent 
NAPs. This transformation is used to show that there is one form of 

gj{c?j) that transforms to the type of problem considered in Scenario 1 

and can therefore be solved using a greedy algorithm. 
We may assume that there is some smallest unit by which the q? 

can be increased or decreased (the absolute limit is the smallest unit 

of currency), and we denote this by 8. Recalling that the conservation 

budget is B, there are m = 
B/8 units of budget to allocate. In the trans 

formed problem, each taxon, /, from the original g-NAP is replaced by 
m derived taxa. The m derived taxa are all located in the same position 
in the tree as the original taxon ; was, this is possible as these taxa have 

pendant edges of zero length and the original taxon / is a leaf node. 

Each of the derived taxa represents a budget unit being allocated to 

the original taxon j. Consequently, there is an ordering of these taxa, the 

first of the m taxa derived from j represents a single budget unit being 
allocated to ; and so on. Given a solution to the transformed NAP, the 

corresponding solution to the g-NAP is found by noting how many 
derived taxa are conserved for each original taxon, ;?this indicates 

the number of budgetary units to allocate to j. 
The cost of each derived taxon is simply the cost of a single bud 

getary unit (8). Next it is necessary to place some restrictions on the 

parameters, a-}? and bj? of the derived taxa. Consider a taxon, ;', in the 

original g-NAP. When the first / taxa derived from ; are conserved, the 

probability that at least one of the taxa derived from j remains extant is: 

0<I r>l 

For the derived NAP to be equivalent to the original g-NAP, z;7 should 

equal the probability that j remains extant if 18 is spent on conserving 
it: qj(lS). For each original taxon, ;', this gives m + 1 equations for the 

2m parameters bji and a??: 

zn=qfi8). (8) 

Lemma 1. The above transformation results in a NAP that is equivalent to 

the original g-NAP provided that for all j and for all I: 

ft/(?+l) ~a;(/+!) < bji -dji 

1 
? 

aj(l+l) 1 ? 
ajl 

Proof. From the derivation of the condition on a?? and bji it is appar 
ent that conserving the first / taxa derived from the original taxon j 
is equivalent to spending 81 on conserving taxon j. However, this as 

sumes that the derived taxa are added in the appropriate order, the 

remainder of this proof shows that this is guaranteed if Equation (9) is 

satisfied. 

Consider only those taxa derived from a single taxon, ;', of which 

the first / taxa in the sequence have been conserved. The increase in z;/ 
that the addition of one of the remaining taxa, o, will provide is: 

az,(o)=^f?^ n^1 
- 
m n^1 

- 
m 1 ai? r<\ s>; 

The taxon that provides the greatest increase in z;7 will be the taxon 

picked next by the greedy algorithm. Equation (9) guarantees that 

Azji(o) will be greatest for o = I + 1, hence the correct taxon may be 

added next. There may be other taxa with an equal value of Az/7(o); 
however, it is only necessary for the correct sequence of taxon additions 

to be a possible greedy solution. As previously noted, all solutions pro 
duced by the greedy algorithm will be optimal; hence, it suffices for 

one of the solutions produced by the transformed NAP to be realistic. 

Theorem 3. Problems for which g?(q?) has the form 

gj(q}) 
= 

l-tfi(l-a}) with 0 < k < 1, (10) 

can be transformed to a NAP of the type described in Scenario 1. Consequently, 
such problems can be solved using a greedy algorithm. 

Proof. To satisfy the restrictions imposed on Scenario 1, the costs of each 

transformed taxon must be equal and Equation (4) must be satisfied. 

The former restriction is trivial as each taxon costs 8 to conserve, the 

remainder of the proof shows that a transformation satisfying the latter 

condition exists. 

The condition imposed on the transformation [z;7 
= 

g?(18)] for this 

particularity) is: 

1 - n^1 
- 
m n^1 

- 
air)=i 

- *"(! - ?; ). ai) 
o<l r>l 

Applying the necessary condition for the transformed NAP to be a 

Scenario 1 type problem (Equation (4)) this becomes: 

l-KlYl(l-ajr) 
= 

l-kl\l-ai). (12) 

This has a simple solution, k =ks and ?;> 
= 1 ? 

(1 
? 

a?)1/m for all ;', r. 

This solution also trivially satisfies Equation (9) because all taxa derived 

from an original taxon are identical (and hence the transformed NAP 

is equivalent to the original g-NAP). 
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